Длинный провод на все диапазоны. Согласование антенн случайной длины

Длинный провод на все диапазоны. Согласование антенн случайной длины

26.08.2023


В радиосвязи, антеннам отводится центральное место, для обеспечения лучшего ее, радиосвязи, действия антеннам следует уделять самое пристальное внимание. В сущности, именно антенна и осуществляет сам процесс радиопередачи. Действительно, передающая антенна, питаясь током высокой частоты от передатчика, производит преобразование этого тока в радиоволны и излучает их в нужном направлении. Приемная же антенна, осуществляет обратное преобразование – радиоволны в ток высокой частоты, а уже радиоприемник выполняет дальнейшие преобразования принятого сигнала.

У радиолюбителей, где всегда хочется побольше мощности, для связи с возможно более дальними интересными корреспондентами, бытует максима – лучший усилитель (КВ), это антенна.

К этому клубу по интересам, пока принадлежу несколько опосредовано. Радиолюбительского позывного нет, но интересно же! Работать на передачу нельзя, а вот послушать, составить представление, это, пожалуйста. Собственно, такое занятие называется радионаблюдение. При этом, вполне можно обменяться с радиолюбителем которого вы услышали в эфире, карточками-квитанциями, установленного образца, на сленге радиолюбителей QSL. Приветствуют подтверждения приема и многие радиовещательные КВ станции, иногда поощряя такую деятельность мелкими сувенирами с логотипами радиостанции – им важно знать условия приема их радиопередач в разных точках мира.

Радиоприемник наблюдателя может быть довольно простым, по крайней мере, на первых порах. Антенна же, сооружение не в пример более громоздкое и дорогостоящее и чем ниже частота, тем более громоздкое и дорогостоящее – все привязано к длине волны.

Громоздкость антенных конструкций, во многом вызвана и тем, что на малой высоте подвеса, антенны, особенно для низкочастотных диапазонов – 160, 80,40м, работают плохо. Так что громоздкость им обеспечивают как раз мачты с оттяжками, ну и длины в десятки, иногда сотни метров. Словом, не особенно миниатюрные штуки. Хорошо бы иметь для них отдельное поле рядом с домом. Ну, это как повезет.

Итак, несимметричный диполь.

Выше, чертеж-схема нескольких вариантов. Упомянутая там MMAНа – программа для моделирования антенн.

Условия на местности оказались таковы, что удобно умещался вариант из двух частей 55 и 29м. На нем и остановился.
Несколько слов о диаграмме направленности.

Антенна имеет 4 лепестка, «прижатых» к полотну. Чем выше частота - тем более они «прижимаются» к антенне. Но правда и усиление имеют больше. Так что на этом принципе

можно строить вполне направленные антенны, имеющие правда, в отличии от «правильных», не особенно высокое усиление. Так что размещать эту антенну нужно учитывая ее ДН.

Антенна на всех диапазонах указанных на схеме, имеет КСВ (коэффициент стоячей волны, параметр для антенны весьма важный) в пределах разумного для КВ.

Для согласования несимметричного диполя - он же Windom – нужен ШПТДЛ (широкополосный трансформатор на длинных линиях). За сим страшным названием скрывается относительно несложная конструкция.

Выглядит примерно так.

Итак, что было сделано.
Первым делом определился со стратегическими вопросами .

Убедился в наличии основных материалов, в основном конечно, подходящего провода для полотна антенны в должном количестве.
Определился с местом подвеса и «мачтами». Рекомендуемая высота подвеса – 10м. Мою деревянную мачту, стоящую на крыше дровника, по весне свернуло сходящим смерзшимся снегом - не дождалась, как не жаль, пришлось убирать. Решено было пока зацепить одну сторону за конёк крыши, высота при этом будет составлять около 7м. Маловато конечно, зато дешево и сердито. Вторую сторону удобно было подвесить на стоящей напротив дома липе. Высота там получалась 13…14м.

Что использовалось.

Инструменты.

Паяльник, понятно, с принадлежностями. Мощностью, ватт, этак на сорок. Инструмент для радиомонтажа и мелкий слесарный. Что ни будь сверлильное. Очень пригодилась мощная электрическая дрель с длинным сверлом-буром по дереву – коаксиальный кабель снижения пропустить сквозь стену. Конечно удлинитель к ней. Пользовался термоклеем. Предстоят работы на высоте – стоит позаботиться о подходящих крепких лестницах. Очень помогает чувствовать себя увереннее, вдали от земли, страховочный пояс – как у монтеров на столбах. Карабкаться наверх, конечно не очень удобно, зато можно работать уже «там», двумя руками и без особых опасений.

Материалы.

Самое главное – материал для полотна. Применил «полевку» - полевой телефонный провод.
Коаксиальный кабель для снижения, сколько нужно.
Немного радиодеталей, конденсатор и резисторы по схеме. Две одинаковые ферритовые трубочки от ВЧ фильтров на кабелях. Коуши и крепеж для тонкого провода. Маленький блок (ролик) с ухом-креплением. Подходящую пластиковую коробочку для трансформатора. Керамические изоляторы для антенны. Капроновую веревку подходящей толщины.

Что было сделано.

Первым делом отмерил (семь раз) куски проводов для полотна. С некоторым запасом. Отрезал (один раз).

Взялся за изготовление трансформатора в коробочке.
Подобрал ферритовые трубки для магнитопровода. Он изготовлен из двух одинаковых ферритовых трубочек от фильтров на кабелях мониторов. Сейчас старые мониторы на ЭЛТ просто выбрасывают и найти «хвосты» от них не особенно сложно. Можно поспрашивать у знакомых, наверняка у кого ни будь да пылится на чердаках или в гараже . Удача, если есть знакомые системные администраторы. В конце концов, в наше время, когда везде стоят импульсные блоки питания и борьба за электромагнитную совместимость ведется нешуточная, фильтры на кабелях могут быть много где, более того, такие ферритовые изделия вульгарно продаются в магазинах электронных компонентов.

Подобранные одинаковые трубочки сложены на манер бинокля и скреплены несколькими слоями липкой ленты. Намотка выполнена из монтажного провода максимально возможного сечения, такого, чтобы вся обмотка поместилась в окнах магнитопровода. С первого раза не получилось и пришлось действовать методом проб и ошибок, благо, витков совсем немного. В моем случае, под рукой не нашлось подходящего сечения и пришлось мотать двумя проводами одновременно, следя в процессе, чтобы они не перехлёстывались.

Для получения вторичной обмотки - делаем два витка двумя сложенными вместе проводами, потом вытащить каждый конец вторичной обмотки назад (в обратную сторону трубки), получим три витка со средней точкой.

Из кусочка довольно толстого текстолита, сделан центральный изолятор. Существуют специальные керамические именно для антенн, лучше конечно применять их. Поскольку все слоистые пластики пористы и как следствие весьма гигроскопичны, чтобы параметры антенны не «плавали», следует хорошенько пропитать изолятор лаком. Применил масляный глифталевый, яхтный.

Концы проводов очищены от изоляции, несколько раз пропущены через отверстия и хорошенько пропаяны с хлористым цинком (флюс «Паяльная кислота»), чтобы пропаялись и стальные жилки. Места пайки очень тщательно промываются водой от остатков флюса. Видно, что концы проводов, предварительно продеты в отверстия коробочки, где будет сидеть трансформатор, иначе придется потом продевать в эти же дырочки все 55 и 29 метров.

Припаял к местам разделки соответствующие выводы трансформатора, укоротив эти выводы до минимума. Не забывать перед каждым действием, примерять к коробочке, чтобы потом все влезло.

Из кусочка текстолита от старой печатной платы, выпилил кружок на дно коробочки, в нем два ряда дырочек. Через эти дырочки, бандажом из толстых синтетических ниток крепится коаксиальный кабель снижения. Тот, который на фото, далеко не лучший в данном применении. Это телевизионный со вспененной изоляцией центральной жилы, сама жила «моно», для навинчивающихся телевизорных разъемов. Но была в наличии бухточка трофейного. Применил ее. Кружок и бандаж, хорошенько пропитан лаком и высушены. Конец кабеля предварительно разделан.

Припаяны остальные элементы, резистор набран из четырех. Все залито термоклеем, вероятно зря – тяжеловато получилось.

Готовый трансформатор в домике, с «выводами».

Между делом было изготовлено крепление к коньку – там на самом верху две доски. Длинные полосы из кровельной стали, петелька из нержавеющей 1.5мм. Концы колечек приварены. На полосах по ряду из шести отверстий для саморезов – распределить нагрузку.

Подготовлен блок.

Керамических антенных «орешков» не добыл, применил вульгарные ролики от старинной проводки, благо, в старых деревенских домах под снос еще встречаются. По три штуки на каждый край – чем лучше изолирована антенна от «земли», тем более слабые сигналы может принять.

Примененный полевой провод с вплетенными стальными жилками и хорошо выдерживает растягивание. Кроме того, предназначен для прокладывания под открытым небом, что к нашему случаю тоже вполне подходит. Радиолюбители довольно часто изготавливают из него полотна проволочных антенн и провод неплохо себя зарекомендовал. Накоплен некоторый опыт его специфичного применения, который в первую очередь говорит, что не стоит провод сильно изгибать – лопается на морозе изоляция, влага попадает на жилы и они начинают окисляться, в том месте, через некоторое время, провод и рвется.

За последний месяц увлечение радио немного продвинулось: я стал обладателем легендарного Icom IC-R75, построена антенна T2FD, и натянута самая простая, но интересная антенна.

О первых двух будут отдельные посты, потому что T2FD пока лежит в коридоре и ожидает ключа к заветной двери на чердак, а новый приемник просто требовал чего-то более, чем провод на балконе.

Итак, LW (длинный луч, Windom или "американка") - о ней и пойдет речь.


Примечательно, что антенна была изобретена Виндомом аж в 1936 году и до сих пор не утратила актуальности, как и многие другие вещи в радио. В стандартном виде она должна иметь длину ровно 41 метр и перекрывать практически все радиолюбительские диапазоны КВ, кроме 160м.

Покрутив в очередной раз вечером валкодер, я понял, что нужно расширять горизонты, и пока не установлена T2FD на крыше, натянуть длинный луч.

Посмотрев в окно, быстро выбрал нижнюю точку подвеса - старый деревянный столб электросети. Не самое лучшее, конечно решение, учитывая, что у меня двор-коробка из 10-этажек, но учитывая трудозатраты, то в качестве временного решения - лучше и не придумать.

На следующее утро отправился на строительный рынок, где были приобретены:
1. Полевка П-274 40 метров (распутана и срощена) - 300 руб.
2. Зажимы дуплекс М2 - 6 шт - 72 руб.
3. Тросик д2 - 2 м - 16 руб.
4. Изолятор ретро - 2 шт. -24 руб.
5. Дюбель с кольцом 10*60 - 12 руб.
6. Рым-винт - 12 руб.
Итого, 436 рублей)

Монтаж антенны занял часов 5 вместе со всеми мелочами и намоткой трансформатора.
Балун 1:9 изготовлен на кольце РС40 диаметром 38 мм. по известной всему интернету схеме.

Длина полотна получилась что-то в районе 70 метров. Со столба до балкона на 6 этаже посередине:


Высота подвеса на столбе - в районе 5 метров.

Так как такое длинное полотно обязательно будет накапливать статику, проведен отдельный провод заземления от перил балкона (которые соединены с арматурой и контура дома). Атмосферное напряжение - вещь серьезная:

Сразу же вместе в фидером протянул жилу на кухню, где у меня оборудован радиошек. В перспективе поставлю антенный переключатель с положением всех антенн "на землю".

Пока на всякий случай втыкаю жилу в радио - так спокойнее. На прием не влияет, потому что антенна уже имеет "сброс" ВЧ токов через трансформатор.

Питание антенны через трансформатор решил делать только из-за этого выхода на землю, не хотелось, чтобы токи бежали через ресивер.В любом случае, майские грозы уже давно позади, поэтому есть еще время подумать над наилучшим решением.

Крепление верхнего конца антенны:


Общий вид:

При натяжении важно также дать небольшое провисание полотна для снятия физического напряжения на провод. Необходимо учитывать и возможное обледенение, и ураганные ветра, которые тоненькая полевка может не выдержать.

Как результат:
- открылся диапазон 80 метров: слышу любителей из всех зон в России, но не более.
- открылась железнодорожная частота 2130 кГц. Ничего интересного
- средние и длинные волны - теперь гремят на "ура". Слушать одно удовольствие.
- вещательные станции в диапазоне 70, 60 метров - теперь слышны громко, а главное - их стало много!).
Африка, Юго-Восточная Азия также хорошо слышны.

Сегодня, например, под вечер, слушал Radio Australia, как будто это ближняя станция.

Но. Станции Америки по-прежнему остаются для меня загадкой. Либо Китайрадио перебивает, либо они ждут T2FD на крыше!..

Радиолюбители частенько, по разным причинам, используют, в качестве передающей, антенну «длинный провод». Такое её название означает, что длина провода больше, чем длина рабочей волны, и, следовательно, антенна возбуждается на гармониках её собственной длины волны. О свойствах и конструктивных особенностях антенны в виде длинного провода далее.

Сооружение антенны в виде длинного провода достаточно просто и не требует больших затрат, но сама антенна занимает много места, так как пропорционально её длине увеличивается и её эффективность. При соответствующем подборе размеров антенны и фидера антенна может служить в качестве коротковолновой широкодиапазонной антенны.

Необходимая длина антенны в виде длинного провода определяется по формуле

где l - искомая длина, м;

n - число полуволн рабочей волны;

f - рабочая частота, МГц.

Из диаграммы направленности полуволнового вибратора (рис. 1-9) видно, что максимум излучения направлен перпендикулярно оси антенны.

С увеличением длины антенны направление основного лепестка диаграммы направленности все больше и больше приближается к оси антенны. Одновременно увеличивается и интенсивность излучения в направлении основного лепестка. На рис. 2-1 изображены диаграммы направленности антенн, имеющих различную длину.

Заметно, что с увеличением длины антенн появляются боковые лепестки.

Полученная многолепестковость диаграммы направленности не является существенным недостатком таких антенн (длинный провод), так как они всё-таки сохраняют удовлетворительную круговую диаграмму направленности, дающую возможность устанавливать связь почти в любых направлениях. Да и в направлении основного излучения достигается заметное усиление, увеличивающееся вместе с увеличением длины антенны.

Характерной чертой таких антенн, особенно полезной для DX связей, является то, что они имеют небольшие вертикальные углы излучения. На рис. 2-2 приведён график, по которому можно разобраться с теоретическим усилением антенны в децибелах (кривая I), увидеть угол между направлением основного излучения и плоскостью подвеса антенны (кривая III), а также сопротивление излучения антенны, отнесённое к току в пучности (кривая II).

Нужно определить:

а) необходимую длину провода для 4λ антенны;

б) ожидаемое усиление антенны в направлении максимума основного лепестка;

в) сопротивление излучения и направление максимума основного лепестка.

Длина провода определяется по формуле:

Так как на 4λ антенне может разместиться 8 полуволн, то n = 8. Средняя частота 20-м диапазона 14,1 Мгц.

Таким образом, длина провода составляет 84,57 м.

Из рис. 2-2 находим, что при длине антенны 4λ (точка пересечений с кривой I) следует ожидать усиления антенны в направлении максимума основного лепестка около 3 дб.

Сопротивление излучения при этом 130 ом (кривая II), а угол между направлением основного лепестка диаграммы направленности и плоскостью подвеса антенны (кривая III) равен 26°.

В связи с тем, что антенна подвешена в направлении восток - запад, и это соответствует 270°, то, как видно из рассмотрения на рис. 2-1, основные максимумы диаграммы направленности имеют следующие направления:

270 + 26 = 296°,

270 - 26 = 244°,

Определив направления основного излучения, можно по карте мира в конической равноугольной проекции найти те районы, с которыми может быть достигнута наиболее устойчивая связь при использовании рассмотренной здесь антенны.

Диаграммы направленности (рис. 2-1) представляют собой идеализированные теоретические диаграммы и на практике всегда претерпевают некоторые изменения. Например, заметная деформация диаграммы направленности имеет место, когда вибратор возбуждается на одном из его концов, т. е. питание антенны несимметричное. Для наглядности на рис. 2-3 приведена диаграмма направленности 2λ антенны в виде длинного провода в горизонтальной плоскости при симметричном и несимметричном питании. При возбуждении антенны на одном из ее концов (диаграмма изображена штриховой линией) диаграмма направленности также становится несимметричной, причем максимум излучения перемещается в направлении открытого конца антенны, а лепестки излучения, находящиеся в направлении конца антенны, с которого производится возбуждение антенны, ослабляются.

Подобная деформация диаграммы направленности возникает во всех антеннах с несимметричным питанием. Следовательно, антенна в виде длинного провода дает основное излучение в направлении открытого конца. Дальнейшая деформация диаграммы направленности происходит в случае, если антенна либо наклонена по отношению к земле, либо расположена над наклонным участком. Если открытый конец антенны наклонен или же антенна подвешена над наклонной поверхностью (рис. 2-4), то в направлении, указанном на рисунке стрелкой, в любительских коротковолновых диапазонах могут быть установлены дальние связи.

При установлении связей на больших расстояниях особенное значение имеет направление основного лепестка диаграммы направленности антенны в вертикальной плоскости. Как уже упоминалось, для дальних связей особенно благоприятным является «плоское» излучение, т. е. небольшие вертикальные углы излучения. В частности, для каждого из любительских диапазонов наиболее благоприятные средние углы вертикального излучения составляют: 80-м диапазон - 60°; 40-м - 30°; 20-м - 15°; 15-м - 12° и 10-м - 9°.

Антенны в виде длинного провода имеют пологие углы вертикального излучения в случае большой высоты подвеса провода. Например, при высоте подвеса, равной 2λ, вертикальный угол излучения составляет 10°, а при высоте 0,5λ - около 35°. При меньших высотах подвеса антенны уменьшение вертикального угла излучения и, следовательно, увеличение возможности дальних связей может быть достигнуто, как уже отмечалось выше, за счёт наклона вибратора.

Использование антенны «длинный провод» в качестве многодиапазонной

Самая простая из антенн коротковолнового диапазона L-образная антенна. По своему внешнему виду она мало чем отличается от радиовещательных антенн средневолнового диапазона (рис. 2-5). Её общая длина l (до антенного зажима подсоединяемого устройства) должна составлять по меньшей мере λ/2. Эту антенну можно использовать как многодиапазонную, если она рассчитана как полуволновая антенна для диапазона 80 м. В этом случае антенна представляет собой для диапазона 40 м 1λ антенну, для 20 м - 2λ антенну, для 15 м - 3λ антенну и для 10-м диапазона - 4λ антенну.

К сожалению, сказанное выше не совсем верно, когда по формуле:

определяется длина полуволновой антенны для f = 3 500 кГц, то имеем:

Однако, полуволновая антенна для частоты 7 МГц, по той же формуле, должна иметь длину:

Таким образом, полуволновая антенна короче требуемого значения более чем на 1 м.

Из приводимого ниже сравнения видно, что полуволновая антенна, рассчитанная для 3 500 кГц, в случае использования её на высших гармониках расчётной частоты, соответствующих любительским диапазонам, в каждом случае короче необходимого значения.

Таким образом, когда нормальная L-антенна используется в качестве многодиапазонной, то следует учитывать, что она может быть точно рассчитанной только для одного диапазона, а в остальных диапазонах полное согласование получено быть не может.

На практике длина антенны, равная 42,2 м, является достаточно хорошим компромиссным решением, так как в этом случае резонансная частота антенны расположена в пределах диапазонов 10, 15 и 20 м (f соответственно равна 14 040 кГц, 21 140 кГц, 28 230 кГц), а для диапазона 40 и 80 м такая антенна имеет длину, большую необходимой. Применение рассмотренной антенны в качестве вседиапазонной антенны, конечно, следует понимать, как вспомогательное решение.


Это связано с тем, что в густонаселенных районах вследствие того, что L-образная антенна излучает по всей своей длине, включая подводящий фидер, могут возникнуть сильные помехи радиовещательным и др. приёмникам. Часто предлагаемый способ связи антенны с колебательным контуром оконечного каскада через высоковольтный конденсатор (рис. 2-6) может в лучшем случае уменьшить излучение высших гармоник только у станций небольшой мощности.

73!

Непосредственно к передатчику можно подключить только антенно-фидерное устройство, входное сопротивление которого обеспечивает его нормальную работу. Питание большинства антенн, применяемых в настоящее время радиолюбителями-коротковолновика-ми, осуществляется с помощью коаксиального кабеля с КСВ, близким к 1 (обычно не более 2). Имеющиеся в выходных каскадах ламповых усилителей мощности устройства связи с антенной обеспечивают возможность согласования с такими антенно-фидерными устройствами, т. е. передачу максимальной выходной мощности в антенну. Транзисторные усилители мощности могут не иметь органов регулировки согласования с антенной и требуют подключения к ним фидера с КСВ не более 1,1 ... 1,2. Поэтому между антенно-фидерным устройством с большим КСВ и любым передатчиком и между передатчиком, рассчитанным на работу с определенным согласованным фидером (на активную нагрузку 50 или 75 Ом), и любым антенно-фидерным устройством необходимо включить устройство согласования. Для контроля настройки устройства согласования между передатчиком и входом антенны включают измеритель КСВ, как это показано на рис. 3.11. При этом КСВ-метр должен работать при полной выходной мощности передатчика. Схема подключения устройства согласования рис. 3.11 отличается от обычно приводимых схем в учебниках по антенно-фидерным устройствам, где устройство согласования включается между антенной и фидером, обеспечивая минимальный КСВ, а следовательно, и потери в фидере. В практике радиолюбителей-коротковолновиков согласование антенны с фидером достигается включением его в точки питания антенны, сопротивление между которыми близко к волновому сопротивлению фидера или использованием простейших трансформаторов сопротивлений между антенной и фидером. А в некоторых типах KB радиолюбительских антенн применяются фидеры, рассогласованные с антенной, такие сооружения радиолюбители называют антеннами с питанием стоячей волной. При применении в этих антеннах фидерных линий с малыми потерями (например, воздушных двухпроводных симметричных линий) КПД антенно-фидерного устройства, как было показано выше, сохраняется достаточно высоким.

Согласующее устройство, трансформирующее входное сопротивление антенны в активное сопротивление, близкое к 75 Ом, оказывается полезным и при приеме. Оно обеспечивает оптимальное согласование входной цепи приемника (обычно рассчитанной на подключение коаксиального кабеля с волновым сопротивлением 50 ... 75 Ом) и, следовательно, реализацию полной чувствительности приемника.

Используемые радиолюбителями согласующие устройства (в частности, и описанные ниже) полезны и для улучшения фильтрации побочных излучений передатчика и являются хорошим средством защиты от помех телевизионному приему.


На рис.3.12 приведена схема универсального согласующего устройства, предназначенного для работы с несимметричным антенно-фидерным устройством (антенна, питаемая коаксиальным кабелем, антенна типа «длинный провод» с заземлением и т.п.). Это устройство обеспечивает возможность согласования передатчика, рассчитанного на нагрузку 50 или 75 Ом, с антенной, имеющей активную составляющую входного сопротивления от 10 до 1000 Ом и индуктивную или емкостную реактивную составляющую входного сопротивления до 500 Ом. Диапазон рабочих частот 1,8 ... 30 МГц, подводимая мощность до 200 Вт. При необходимости работать с полной мощностью, разрешенной любительским KB радиостанциям, детали устройства (рис. 3.12) должны быть рассчитаны на работу при ВЧ напряжениях, достигающих 3000 В, - зазоры между пластинами С1 должны быть не менее 3 мм, расстояния между контактами переключателей не менее 10 мм. При работе с меньшими мощностями или при согласовании антенн, питаемых коаксиальными кабелями при КСВ не более 3, достаточно использовать С1 с зазором 0,5 мм (сдвоенный конденсатор переменной емкости от старых радиовещательных приемников) и обычные галетные керамические переключатели. Катушка L1 намотана на керамическом каркасе диаметром 50 мм медным проводом диаметром 1,5 мм. Считая от конца, соединенного с XS1, она содержит: два витка с шагом 5 мм, конца, соединенного с XS1, она содержит: два витка с шагом 5 мм, два витка с шагом 5 мм, три витка с шагом 3 мм, три витка с шагом 3 мм, пять витков с шагом 3 мм, пять витков с шагом 3 мм и пять секций по семь витков с шагом 2 мм.

Переключатель SA1 регулирует индуктивность катушки LI. Переключатель SA2 изменяет схему согласования: в показанном на рис. 3.12 положении SA2 конденсатор С1 подключен между выходом передатчика и корпусом, a L1 - между выходом передатчика и антенной.

При этом обеспечивается согласование антенн, имеющих низкое входное сопротивление.

В следующем (по схеме) положении SA2 конденсатор С1 подключается между антенной и корпусом, a L1 остается включенной между выходом передатчика и антенной. В таком положении SA2 обеспечивается согласование антенн, имеющих высокое входное сопротивление. В последнем (по схеме) положении SA2 элементы С1 и L1 включаются последовательно между выходом передатчика и антенной, что позволяет скомпенсировать реактивную составляющую входного сопротивления антенны без трансформации его активной составляющей.


Схему рис. 3.12 можно применить и для связи передатчика с несимметричным выходом (под коаксиальный кабель) с симметричной антенной. Для этого между XS2 и антенной необходимо включить симметрирующий трансформатор (рис. 3.13).

Соединитель XS1 подключается к антенному выходу согласующего устройства по схеме рис. 3.12, а к XS2 и XS3 подключаются провода симметричного кабеля, питающего антенну. Трансформатор Т1 можно выполнить на тороидальном ферритовом магнитопроводе с магнитной проницаемостью 70 ... 200, диаметром около 100 мм и сечением не менее 2 см2. Обмотка выполняется проводом во фторопластовой изоляции, сечение провода не менее 2 мм2 (можно использовать медный провод, пропущенный в фторопластовую трубку или медный провод с любой другой высокочастотной изоляцией, рассчитанной на напряжение до 3000 В). Обмотку выполняют двумя проводами, скрученными с шагом около 15 мм на одно перекрещивание проводов. Число витков 2x15, начало одного провода соединяют с концом другого, образуя заземляемый отвод трансформатора. Следует учитывать, что в зависимости от входного сопротивления антенны и материала сердечника число витков Т1 возможно придется подобрать. Кроме того, магнитопровод трансформатора может стать источником потерь и нелинейных искажений сигнала, приводящих к появлению побочных составляющих сигнала передатчика в антенне при их отсутствии на его выходе.

Более надежным для работы с симметричной антенной является согласующее устройство, собранное по схеме рис. 3.14. Как и устройство, показанное на рис. 3.12, оно рассчитано на подводимую мощность до 200 Вт в диапазоне 1,8 ... 30 МГц. Конденсатор С1 должен иметь зазор между пластинами не меньшее 0,5 мм, а С2 - не меньшее 2 мм. Катушка L1 намотана на керамическом каркасе диаметром 50 мм. От заземляемого отвода в обе стороны ведется намотка медным проводом диаметром 1,2 мм. Первые десять витков в обе стороны от отвода наматываются с шагом 4 мм, далее еще по 20 витков с шагом 3 мм. От каждого витка катушки делается отвод (его удобно выполнить в виде лепестка из медной фольги). Отводы располагаются равномерно по окружности катушки так, что к любому из них легко подключить выводы, соединяющие L1 с устройствами. На каждом диапазоне необходимо подобрать положение подключений соединителей XS2 и SS3 (связь с антенной) и индуктивность L1 закорачивающими перемычками. При этом число положений подключения фидера и число действующих витков с каждой стороны L1 от заземленного отвода должно быть одинаковым. Отвод, подключающий к L1 конденсатор С1 , регулирует связь согласующего устройства с передатчиком. Конденсатор С1 настраивает в резонанс цепь связи с передатчиком, а С2 - цепь связи с антенной. Выполнение регулировки согласующих устройств, сделанных по схемам рис. 3.12 и 3.14 дело трудоемкое. Большое число имеющихся в этих схемах органов настройки позволяет в кабеле, идущем к передатчику, добиться КСВ, близкого к 1. Так как при произвольном положении органов настройки согласующих устройств передатчик может оказаться резко рассогласованным с нагрузкой, регулировку согласования с антенной надо начинать при минимальной мощности передатчика.

Можно использовать на каждом диапазоне (или только на диапазонах, где КСВ в фидере антенны велико) отдельные согласующие устройства, выполненные на основе схем рис. 3.12 и 3.14.

Устройство, собранное по схеме рис. 3.14, позволяет добиться согласования передатчика с антенной при различных установках отводов регулировки связи передатчика и антенны При слабой связи с обоих сторон повышается фильтрующее действие согласующего устройства, но снижается его КПД в процессе эксплуатации радиостанции можно подобрать оптимальные связи в согласующем устройстве, при которых полностью отсутствует проявление побочных излучений при достаточно малых потерях в нем При работе с симметричной антенной целесообразно проверить, выполняется ли в действительности ее симметричное питание Для этого замеряются ВЧ напряжения на проводах фидера по отношению к корпусу передатчика. Их значения должны быть равны с точностью не хуже ±2%.

Антенные согласующие устройства. Тюнеры

АСУ. Антенные тюнеры. Схемы. Обзоры фирменных тюнеров


В радиолюбительской практике не так часто можно встретить антенны, в которых входное сопротивление является равным волновому сопротивлению фидера, а также выходному сопротивлению передатчика.

В преимущественном большинстве случаев обнаружить такое соответствие не удается, поэтому приходиться использовать специализированные антенные согласующие устройства. Антенна, фидер и выход передатчика (трансивера) входят в единую систему, в которой энергия передаётся без каких-либо потерь.

Нужен ли вам антенный тюнер?

От Алексея RN6LLV:

В данном видео я расскажу начинающим радиолюбителям об антенных тюнерах.

Для чего нужен антенный тюнер, как его грамотно использовать совместно с антенной, и какие типичные заблуждения о применении тюнера бытуют у радиолюбителей.

Речь идёт о готовом изделии - тюнере (произведённом фирмой), если есть желание построить собственный, сэкономить или поэкспериментировать - то можно видео пропустить и см. далее (ниже).

Совсем внизу - обзоры фирменных тюнеров.


Антенный тюнер, антенный тюнер купить, цифровой тюнер +с антенной, автоматический антенный тюнер, антенный тюнер mfj, кв антенные тюнера, антенный тюнер +своими руками, антенный тюнер кв диапазона, схема антенного тюнера, а нтенный тюнер LDG, ксв метр

Вседиапазонное согласующее устройство (с раздельными катушками)

Переменные конденсаторы и галетный переключатель от Р-104 (блок БСН).

При отсутствии указанных конденсаторов, можно применить 2-секционные, от вещательных радиоприемников, включив секции последовательно и изолировав корпус и ось конденсатора от шасси.

Также можно применить обычный галетный переключатель, заменив ось вращения на диэлектрическую (стеклотекстолит).

Данные контурных катушек тюнера и комплектующих:

L-1 2,5 витка, провод AgCu 2 мм, наружный диаметр катушки 18 мм.

L-2 4,5 витка, провод AgCu 2 мм, наружный диаметр катушки 18 мм.

L-3 3,5 витка, провод AgCu 2 мм, наружный диаметр катушки 18 мм.

L-4 4,5 витка, провод AgCu 2 мм, наружный диаметр катушки 18 мм.

L-5 3,5 витка, провод AgCu 2 мм, наружный диаметр катушки 18 мм.

L-6 4,5 витка, провод AgCu 2 мм, наружный диаметр катушки 18 мм.

L-7 5,5 витка, провод ПЭВ 2,2 мм, наружный диаметр катушки 30 мм.

L-8 8,5 витка, провод ПЭВ 2,2 мм, наружный диаметр катушки 30 мм.

L-9 14,5 витка, провод ПЭВ 2,2 мм, наружный диаметр катушки 30 мм.

L-10 14,5 витка, провод ПЭВ 2,2 мм, наружный диаметр катушки 30 мм.

Источник: http://ra1ohx.ru/publ/skhemy_radioljubitelju/soglasujushhie_ustrojstva_antennye_tjunery/vsediapazonnoe_su_s_razdelnymi_katushkami/19-1-0-652


Простое согласование антенны LW - "длинный провод"

Нужно было срочно запустить 80 и 40 м в чужом доме, выхода на крышу нет, да и времени на установку антенны нет.

Бросил с балкона третьего этажа на дерево полёвку чуть более 30 м. Взял кусок пластиковой трубы диаметром примерно 5 см, намотал порядка 80 витков провода диаметром 1 мм. Снизу сделал отводы через каждые 5 витков, а сверху через 10 витков. Собрал на балконе вот такое простейшее согласующее устройство.

На стенку повесил индикатор напряжённости поля. Включил диапазон 80 м в режиме QRP, сверху катушки подобрал отвод и конденсатором настроил свою "антенну " в резонанс по максиму показаний индикатора, потом внизу подобрал отвод по минимуму КВС.

Времени не было, а посему галетники не ставил. и по виткам "бегал " при помощи крокодильчиков. И вот на такой суррогат мне отвечала вся европейская часть России, особенно на 40 м. На мою полёвку даже никто не обратил внимания. Это конечно не настоящая антенна, но информация будет полезна.

RW4CJH info - qrz.ru

Согласующее устройство для антенн НЧ диапазонов

Радиолюбители, проживающие в многоэтажных домах, нередко применяют на НЧ диапазонах рамочные антенны.

Такие антенны не требуют высоких мачт (их можно натянуть между домами на сравнительно большой высоте), хорошего заземления, для их питания можно применить кабель, да и помехам они меньше подвержены.

На практике удобен вариант рамки в виде треугольника, так как для ее подвески требуется минимальное число точек крепления.

Как правило, большинство коротковолновиков стремятся использовать такие антенны в качестве много диапазонных, однако в этом случае крайне сложно обеспечить приемлемое согласование антенны с фидером на всех рабочих диапазонах.

В течение более чем 10 лет я использую антенну типа "Дельта" на всех диапазонах от 3.5 до 28 МГц. Ее особенности - это расположение в пространстве и использование согласующего устройства.

Две вершины антенны закреплены на уровне крыш пятиэтажных домов, третья (разомкнутая) - на балконе 3-го этажа, оба ее провода введены в квартиру и подключены к согласующему устройству, которое соединено с передатчиком кабелем произвольной длины.

При этом периметр рамки антенны около 84 метров.

Принципиальная схема согласующего устройства приведена на рисунке справа.

Согласующее устройство состоит из широкополосного симметрирующего трансформатора Т1 и П-контура, образованного катушкой L1 с отводами и подключаемыми к ней конденсаторами.

Один из вариантов выполнения трансформатора Т1 приведен на рис. слева.

Детали. Трансформатор Т1 намотан на ферритовом кольце диаметром не менее 30 мм с магнитной проницаемостью 50- 200 (некритично). Обмотка выполняется одновременно двумя проводами ПЭВ-2 диаметром 0,8 - 1,0 мм, число витков 15 - 20.

Катушка П-контура диметром 40...45 мм и длиной 70 мм выполнена из голого или эмалированного медного провода диаметром 2-2.5 мм. Число витков 13, отводы от 2; 2,5; 3; 6 витков, считая от левого по схеме вывода L1. Подстроенные конденсаторы типа КПК-1 собраны на шпильках в пакеты по 6 шт. и имеют емкость 8 - 30 пФ.

Настройка. Для настройки согласующего устройства необходимо в разрыв кабеля включить КСВ метр. На каждом диапазоне согласующее устройство настраивается по минимуму КСВ с помощью подстроенных конденсаторов и при необходимости подбором положения отвода.

Советую перед настройкой согласующего устройства отсоединить от него кабель и настроить выходной каскад передатчика, подключив к нему эквивалент нагрузки. После этого можно восстановить соединение кабеля с согласующим устройством и выполнить окончательную настройку антенны. Диапазон 80 метров целесообразно разбить на два поддиапазона (CW и SSB). При настройке легко добиться КСВ близкого к 1 на всех диапазонах.

Данную систему можно использовать также на WARC диапазонах (надо только подобрать отводы) и на 160 м, соответственно увеличив число витков катушки и периметр антенны.

Необходимо отметить, что все сказанное выше справедливо только при непосредственном подключении антенны к согласующему устройству. Конечно, данная конструкция не заменит "волновой канал" или "двойной квадрат" на 14 - 28 МГц, но она хорошо настраивается на всех диапазонах и снимает многие проблемы у тех, кто вынужден использовать одну многодиапазонную антенну.

Вместо переключаемых конденсаторов можно применить КПЕ, но тогда придется каждый раз настраивать антенну при переходе на другой диапазон. Но, если дома такой вариант неудобен, то в полевых или походных условиях он вполне оправдан. Уменьшенные варианты "дельты" для 7 и 14 МГц я неоднократно применял при работе в "поле". При этом две вершины крепились на деревьях, а питающая подключалась к согласующему устройству, лежащему непосредственно на земле.

В заключение могу сказать, что используя для работы в эфире только трансивер с выходной мощностью около 120 Вт без каких-либо усилителей мощности, с описанной антенной на диапазонах 3,5; 7 и 14 МГц никогда не испытывал затруднений, при этом работаю, как правило, на общий вызов.

С. Смирнов, (EW7SF)

Конструкция простого антенного тюнера

Конструкция антенного тюнера от RZ3GI

Предлагаю простой вариант антенного тюнера, собранного по Т-образной схеме.

Опробованы совместно с FT-897D и антенной IV на 80, 40 m.

Строится на всех КВ диапазонах.

Катушка L1 намотана на оправке 40 мм с шагом 2 мм и имеет 35 витков, провод диаметром 1,2 - 1,5 мм, отводы (считая от "земли") - 12, 15, 18, 21, 24, 27, 29, 31, 33, 35 витков.

Катушка L2 имеет 3 витка на оправке 25 мм, длина намотки 25 мм.

Конденсаторы С1, С2 с Сmax = 160 пф (от бывшей УКВ станции).

КСВ метр применяется встроенный (в FT - 897D)

Антенна Inverted Vee на 80 и 40 метров - строится на всех диапазонах.

Юрий Зиборов RZ3GI.

Фото тюнера:

«Z-match» антенный тюнер

Под названием «Z-match» известно превеликое множество конструкций и схем, я бы даже сказал больше конструкций чем схем.

Основа схемного решения от которого я отталкивался широко распространена в интернете и offline литературе, всё выглядит примерно так (см. справа):

И вот, рассматривая множество различных схем, фотографий и заметок размещенных в сети, родилась у меня идея собрать и для себя антенный тюнер.

Под рукой оказался мой аппаратный журнал (да, да, я приверженец старой школы - олдскул, как выражается молодёжь) и на его страничке родилась схема нового, для моей радиостанции прибора.

Пришлось изъять страничку из журнала «для приобщения к делу»:

Заметно, что имеют быть значительные отличия от первоисточника. Я не стал применять индуктивную связь с антенной с её симметричностью, для меня достаточно автотрансформаторной схемы т.к. питать антенны симметричной линией не планируется. Для удобства настройки и контроля за антенно-фидерными сооружениями я добавил в общую схему КСВ-метр и Ваттметр.

Покончив с расчетами элементов схемы можно приступить к макетированию:



Кроме корпуса приходится изготавливать и некоторые радиоэлементы, одной из немногих радиодеталей которую радиолюбитель может сделать сам это катушка индуктивности:

А вот, что получилось в результате, внутри и снаружи:



Еще не нанесены шкалы и обозначения, лицевая панель безлика и не информативна, но главное РАБОТАЕТ!! И это хорошо…

R3MAV. info - r3mav.ru

Согласующее устройство по аналогии Alinco EDX-1

Эта схема антенного согласующего устройства заимствована мной с фирменного Alinco EDX-1 HF ANTENNA TUNER, который работал с моим DX-70.

Детали:

С1 и С2 300 пф. Конденсаторы с воздушным диэлектриком. Шаг пластин 3 мм. Ротор 20 пластин. Статор 19. Но можно применить сдвоенные КПЕ с пластиковым диэлектриком от старых транзисторных приёмников или с воздушным диэлектриком 2х12-495 пф. (как на снимке)

Вы спросите: «А не прошьёт?». Дело в том, что коаксиальный кабель припаян непосредственно к статору, а это 50 Ом, и где должна проскочить искра при таком низком сопротивлении?

Достаточно от конденсатора протянуть "голым" проводом линию длиной 7-10 см, как он сгорит синим пламенем. Для снятия статики конденсаторы можно зашунтировать резистором 15 кОм 2 W. (цитата из "Усилители мощности конструкции UA3AIC").

L1 - 20 витков посеребренного провода Д=2.0 мм, бескаркасная Д=20 мм. Отводы, считая от верхнего по схеме конца:

L2 25 витков, ПЭЛ 1.0, намотана на двух, сложенных вместе ферритовых кольцах, размером Д наруж.=32 мм, Д вн.=20 мм.

Толщина одного кольца = 6 мм.

(Для 3.5 МГц).

L3 28 витков, а всё остальной как у L2 (Для 1.8 МГц).

Но, к сожалению, в то время я не смог найти подходящих колец и поступил так: Выточил из оргстекла кольца и на них намотал провода до заполнения. Соединил их последовательно – это получился эквивалент L2.

На оправке диаметром 18 мм (можно использовать пластиковую гильзу от охотничьего ружья 12 калибра) виток к витку намотал 36 витков – это получился аналог L3.

На снимке все видно. И КСВ-метр тоже. КСВ метр из описания Тарасова А. UT2FW «КВ-УКВ» № 5 за 2003 год.

Согласующее устройство для антенн дельта, квадрат, трапеция

Среди радиолюбителей большую популярность имеет петлевая антенна периметром 84 м. В основном его настраивают на 80М диапазон и с небольшим компромиссом его можно использовать на всех радиолюбительских диапазонах. Такой компромисс можно принять если работаем ламповым усилителем мощности, но если имеем более современный трансивер, там дело уже не пойдет. Нужен согласующее устройство, который устанавливает КСВ на каждом диапазоне, соответствующий нормальной работе трансивера. HA5AG рассказывал мне за простое согласующее устройство и прислал мне краткое его описание (смотри рисунок). Устройство разработано для петлевых антенн практически любой формы (дельта, квадрат, трапеция, и.т.д.)

Краткое описание:

У автора согласующее устройство было опробовано на антенне, форма которого почти квадрат, установленная на высоте 13 м в горизонтальном положении. Входное сопротивление этой QUAD антенны на 80 м –ом диапазоне 85 Ом, а на гармониках 150 – 180 Ом. Волновое сопротивление питающего кабеля 50 Ом. Задача стояла согласовать этот кабель с входным сопротивлением антенны 85 – 180 Ом. Для согласования был применен трансформатор Tr1 и катушка L1.

В диапазоне 80 м с помощью реле Р1 замыкаем накоротко катушку n3. В цепи кабеля остается включенным катушка n2, которая со своей индуктивностью ставит входное сопротивление антенны на 50 Ом. На остальных диапазонах Р1 отключен. В цепи кабеля включены катушки n2+n3 (6 витков) и антенна согласует 180 Ом на 50 Ом.

L1 – удлиняющая катушка. Он найдет свое применение на диапазоне 30 м. Дело в том, что третья гармоника 80 м –го диапазона не совпадает с разрешенным диапазоном частоты 30 м –го диапазона. (3 х 3600 Кгц = 10800 Кгц). Трансформатор T1 согласует антенну на 10500 Кгц, но это еще мало, нужно включить и катушку L1 и в таком включении антенна уже будет резонировать на частоте 10100 Кгц. Для этого с помощью К1 включаем реле Р2, который при этом открывает свои нормально замкнутые контакты. L1 еще может послужить и в диапазоне 80 м, когда желаем работать в телеграфном участке. На 80 м–ом диапазоне полоса резонанса антенны около 120 Кгц. Для сдвига частоты резонанса можно включить L1. Включенная катушка L1 заметно снижает КСВ и на 24 Мгц частоте, а также на 10 м диапазоне.

Согласующее устройство выполняет три функции:

1. Обеспечивает симметричное питание антенны, так как полотна антенны изолирована по ВЧ от «земли» через катушки трансформатора Tr1 и L1.

2. Согласует импеданс, описанным высшее способом.

3. С помощью катушек n2 и n3 трансформатора Tr1 ставит резонанс антенны в соответствующие, разрешенные полосы частоты по диапазонам. Об этом немного подробнее: Если антенна изначально настроена на частоту 3600 кгц (без включения согласующего устройства), то на 40 м диапазоне будет резонировать на 7200 Кгц, на 20 м на 14400 Кгц, а на 10 м уже на 28800 Кгц. Это значит – антенну нужно удлинять в каждом диапазоне, и при этом чем высшее частота диапазона тем больше требует удлинения. Вот, как раз такое совпадение используется для согласования антенны. Катушки трансформатора n2 и n3, T1 c определенной индуктивностью, тем больше удлиняет антенну, чем высшее частота диапазона. Таким способом на 40 м катушки удлиняют в очень маленькой степени, а на 10 м диапазоне уже в значительной степени. Правильно настроенную антенну согласующее устройство ставит в резонанс на каждом диапазоне в районе первой 100 Кгц частоты.

Положение выключателей К1 и К2 по диапазонам указаны в таблице (справа):

Если входное сопротивление антенны на 80 м диапазоне устанавливается не в пределах 80 – 90 Ом а в пределах 100 – 120 Ом, то количество витков катушку n2 трансформатора T1 нужно увеличить на 3, а если сопротивление еще больше так на 4. Параметры остальных катушек остаются без изменений.

Перевод: UT1DA источник - (http://ut1da.narod.ru) HA5AG

КСВ-метр с согласующим устройством

На рис. справа приведена принципиальная схема прибора, включающего в себя КСВ-метр, с помощью которого можно настроить Си-Би антенну, и согласующее устройство, позволяющее привести сопротивление настроенной антенны к Ra = 50 Ом.

Элементы КСВ-метра: Т1 - трансформатор антенного тока, намотанный на ферритовом кольце М50ВЧ2-24 12х5х4 мм. Его обмотка I - продетый в кольцо проводник с антенным током, обмотка II - 20 витков провода в пластиковой изоляции, ее наматывают равномерно по всему кольцу. Конденсаторы С1 и С2 - типа КПК-МН, SA1 - любой тумблер, РА1 - микроамперметр на 100 мкА, например, М4248.

Элементы согласующего устройства: катушка L1 - 12 витков ПЭВ-2 0,8, внутренний диаметр - 6, длина - 18 мм. Конденсатор С7 - типа КПК-МН, С8 -любой керамический или слюдяной, рабочее напряжение не менее 50 В (для передатчиков мощностью не более 10 вт). Переключатель SA2 - ПГ2-5-12П1НВ.

Для настройки КСВ-метра его выход отключают от согласующего контура (в т. А) и соединяют с 50-омным резистором (два параллельно включенных резистора МЛТ-2 100 Ом), а ко входу подключают Си-Би радиостанцию, работающую на передачу. В режиме измерения прямой волны - в указанном на рис. 12.39 положении SA1 - прибор должен показать 70...100 мкА. (Это для передатчика мощностью 4 Вт. Если он мощнее, то "100" на шкале РА1 выставляют иначе: подбором резистора, шунтирующего РА1 при закороченном резисторе R5.)

Переключив SA1 в другое положение (контроль отраженной волны), регулировкой С2 добиваются нулевых показаний РА1.

Затем вход и выход КСВ-метра меняют местами (КСВ-метр симметричен) и эту процедуру повторяют, устанавливая в "нулевое" положение С1.

На этом настройку КСВ-метра заканчивают, его выход подключают к седьмому витку катушки L1.

КСВ антенного тракта определяют по формуле: КСВ=(А1+А2)/(А1-А2), где А1 - показания РА1 в режиме измерения прямой волны, а А2 - обратной. Хотя вернее было бы говорить здесь не о КСВ, как таковом, а о величине и характере антенного импеданса, приведенного к антенному разъему станции, о его отличии от активного Ra = 50 Ом.

Антенный тракт будет настроен, если изменениями длины вибратора, противовесов, иногда - длины фидера, индуктивности удлиняющей катушки (если она есть) и др. будет получен минимально возможный КСВ.

Некоторая неточность настройки антенны может быть компенсирована расстройкой контура L1C7C8. Это можно сделать конденсатором С7 или изменением индуктивности контура - например, введением в L1 небольшого карбонильного сердечника.

Как показывает опыт настройки и согласования Си-Би антенн самых разных конфигураций и размеров (0,1...3L), под контролем и с помощью этого прибора нетрудно получить КСВ = 1... 1,2 в любом участке этого диапазона.

Радио, 1996, 11

Простой антенный тюнер

Для согласования трансивера с различными антеннами можно с успехом применить простейший ручной тюнер, схема которого показана на рисунке. Он перекрывает диапазон частот от 1,8 до 29 мГц.Кроме того, этот тюнер может работать как простейший коммутатор антенн, имеющий еще и эквивалент нагрузки. Мощность, подводимая к тюнеру, зависит от от зазора между пластинами применяемого конденсатора переменной емкости С1 – чем он больше, тем лучше. С зазором 1,5-2 мм тюнер выдерживал мощность до 200 Вт (может и больше – для дальнейших экспериментов мощности моего TRX не хватило). На входе тюнера для измерения КСВ можно включить один из КСВ-метров, хотя при совместной работе тюнера с импортными трансиверами это не обязательно - все они имеют встроенную функцию измерения КСВ (SVR). Два (или больше) ВЧ разъема типа PL259 позволяют подключить антенну, выбранную с помощью галетного переключателя S2 «Коммутатор антенн» для работы с трансивером. Этот же переключатель имеет положение «Эквивалент», при котором трансивер может быть подключен к эквиваленту нагрузки сопротивлением 50 Ом. С помощью релейной коммутации можно включить режим «Обход» и антенна или эквивалент (в зависимости от положения коммутатора антенн S2) будут напрямую подсоединены к трансиверу.

В качестве С1 и С2 применяются стандартные КПЕ-2 своздушным диэлектриком 2х495 пФ от промышленных бытовых приемников. Их секции продернуты через одну пластину. В С1 задействованы две секции, соединенные параллельно. Он установлен на пластине из оргстекла толщиной 5 мм. В С2 – задействована одна секция. S1 – галетный ВЧ переключатель на 6 положений (2Н6П галеты из керамики, их контакты соединены параллельно). S2 - такой же, но на три положения (2Н3П, или на большее число положений в зависимости от количества антенных разъемов). Катушка L2 - намотана голым медным проводом d=1мм (лучше посеребренный), всего 31 виток, намотка с небольшим шагом, внешний диаметр 18 мм, отводы от 9 + 9 + 9 + 4 витка. Катушка L1 -тоже, но 10 витков. Катушки установлены взаимно-перпендикулярно. L2 можно припаять выводами к контактам галетного переключателя, изогнув катушку полукольцом. Монтаж тюнера проводится короткими толстыми (d=1,5-2 мм) отрезками голого медного провода. Реле типа ТКЕ52ПД от радиостанции Р-130М. Естественно, оптимальным вариантом является применение более высокочастотных реле, например, типа РЭН33. Напряжение для питания реле получено от простейшего выпрямителя, собранного на трансформаторе ТВК-110Л2 и диодном мосту КЦ402 (КЦ405) или им подобным. Коммутация реле осуществляется тумблером S3 "Обход" типа МТ-1, установленном на лицевой панели тюнера. Лампа La (не обязательна) служит индикатором включения. Может оказаться, что на низкочастотных диапазонах не хватает емкости С2. Тогда параллельно С2 можно с помощью реле Р3 и тумблера S4 подключать или его вторую секцию или дополнительные конденсаторы (подобрать 50 – 120 пФ - на схеме показано пунктиром).

По рекомендации, оси КПЕ соединены с ручками управления через отрезки дюритового бензошланга, служащие изоляторами. Для их фиксации использованы водопроводные хомутики d=6 мм. Тюнер был изготовлен в корпусе от набора «Электроника-Контур-80». Несколько бОльшие размеры корпуса, чем у тюнера, описанного в , оставляют достаточный простор для доработок и модификаций данной схемы. Например, ФНЧ на входе, согласующий симметрирующий трансформатор 1:4 на выходе, вмонтированный КСВ-метр и другие. Для эффективной работы тюнера не следует забывать о хорошем его заземлении.

Простой тюнер для настройки симметричной линии

На рисунке приведена схема простого тюнера для согласования симметричной линии. В качестве индикатора настройки используется светодиод.

© 2024 udalayagvardia.ru - Строительный портал - Udalayagvardia