Тригонометрия и ее практическое применение. Тригонометрия в архитектуре Сообщение на тему тригонометрические функции в жизни

Тригонометрия и ее практическое применение. Тригонометрия в архитектуре Сообщение на тему тригонометрические функции в жизни

МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОСТОВСКОЙ ОБЛАСТИ

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОСТОВСКОЙ ОБЛАСТИ

«КАМЕНСКИЙ ТЕХНИКУМ СТРОИТЕЛЬСТВА И АВТОСЕРВИСА»

ИНФОРМАЦИОННО-ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТ

ПО ТЕМЕ:

«Тригонометрия вокруг нас»

Выполнили:

обучающиеся ГБОУ СПО РО «КТСиА» группы № 26

Ерохин Алексей,

и группы № 23

Чухов Константин.

Руководитель:

Срыбная Юлия Владимировна,

преподаватель математики.

Каменск-Шахтинский

2015

Стр.

Введение……………………………………………..……………………...3

Ход проведённого исследования …………… …………………………..5

1. Тригонометрия в физике……………………………. ………..……...…5

2. Применение тригонометрии в искусстве и архитектуре. …….. …...… 8

3. Тригонометрия в биологии ………………………………..…… ……...10

4. Тригонометрия в медицине …………………………………………….12

Заключение……………..………………………………………………….. 14

Литература ……………..………………………………………………….. 15

Введение

Реальные процессы окружающего мира обычно связаны с большим количеством переменных и зависимостей между ними. Описать эти зависимости можно с помощью функций. Понятие «функция» сыграло и поныне играет большую роль в познании реального мира. Знание свойств функций позволяет понять суть происходящих процессов, предсказать ход их развития, управлять ими. Изучение функций является актуальным всегда.

Мир функций богат и разнообразен. В различных науках и областях человеческой деятельности возникают функциональные зависимости, которые могут касаться самых разнообразных явлений природы и окружающей среды.

В нашем информационно-исследовательском проекте «Тригонометрия вокруг нас» рассматривается практическое применение тригонометрических функций.

Тригонометрия – раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Слово тригонометрия состоит из двух греческих слов: trigwnon - треугольник и metrew - измерять и в буквальном переводе означает измерение треугольников. Как и всякая другая наука, тригонометрия возникла в результате человеческой практики в процессе решения конкретных практических задач.

Приступая к написанию данной работы, мы столкнулись с противоречием между имеющимися теоретическими знаниями по данной теме и отсутствием понимания того, где в реальной жизни можно встретиться с функциональной моделью, и как человек использует свойства тригонометрических функций в своей практической деятельности.

Объект нашего исследования – тригонометрические функции; предмет исследования - области их практического применения.

Цель : выявить связь тригонометрических функций с явлениями окружающего мира и практической деятельностью человека, показать, что данные функции находит широкое применение в жизни.

Выбрав тему исследовательской работы и определив цель, нам необходимо было решить следующие задачи :

1. Изучить литературу и ресурсы удаленного доступа по теме проекта.

2. Выяснить, какие законы природы выражаются тригонометрическими функцией.

3. Найти примеры применения тригонометрических функций в окружающем мире.

4. Проанализировать и систематизировать имеющийся материал.

5. Подготовить оформленный материал в соответствии с требованиями информационного проекта.

6. Разработать в соответствии с содержанием проекта электронную презентацию.

7. Выступить на конференции с результатами проведённой работы.

Гипотеза исследования: аппарат математики, а именно тригонометрические функции, широко используется в других науках, а также находит практическое применение.

Для решения этих задач нашей проектной деятельности мы будем использовать следующие методы :

    теоретические: изучение литературы, ресурсов удалённого доступа по вопросу нашего проекта.

    логический анализ: метод систематизации накопленного материала.

В нашей работе мы определили следующие этапы изучения:

    Подготовительный, включающий в себя выбор темы проекта, постановку цели и задач, выбор методов изучения нашего объекта.

    Основной (информационно-поисковый), включающий в себя непосредственное изучение литературы, поиск ресурсов удалённого доступа, связанных с нашим проектом.

    Заключительный этап, включающий в себя обработку изученного материала, анализ и систематизацию его. Подведение итогов.

Ход проведённого исследования.

В проведении исследования и оформлении результатов проекта принимали участие обучающиеся групп 23 и 26.

На подготовительном этапе мы познакомились с понятиями «проблема», «исследование», «проект», выдвинули гипотезы и сформулировали цель нашего проекта. Мы начали поиск необходимой информации, изучали литературу по нашей теме и материалы ресурсов удаленного доступа.

На основном этапе , была подобрана и накоплена информация по теме, проанализированы найденные материалы. Мы выяснили основные области применения тригонометрических функций. Все данные были обобщены и систематизированы. Затем разработан целостный окончательный вариант информационного проекта, составлена презентация по теме исследования.

На заключительном этапе была проанализирована презентация работы на конкурс. На этом этапе также предполагалась деятельность по реализации всех поставленных задач, подведение итогов, т. е. оценка своей деятельность.

В осход и заход солнца, изменение фаз луны, чередование времен года, биение сердца, циклы в жизнедеятельности организма, вращение колеса, морские приливы и отливы - модели этих многообразных процессов описываются тригонометрическими функциями.

1. Тригонометрия в физике.

В технике и окружающем нас мире часто приходится сталкиваться с периодическими (или почти периодическими) процессами, которые повторяются через одинаковые промежутки времени. Такие процессы называют колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям. Например, колебания тока в электрической цепи и колебания математического маятника могут описываться одинаковыми уравнениями. Общность колебательных закономерностей позволяет рассматривать колебательные процессы различной природы с единой точки зрения. Наряду с поступательными и вращательными движениями тел в механике значительный интерес представляют и колебательные движения.

Механическими колебаниями называют движения тел, повторяющиеся точно (или приблизительно) через одинаковые промежутки времени. Закон движения тела, совершающего колебания, задается с помощью некоторой периодической функции времени x = f(t). Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени. Примером волны такого рода могут служить волны, бегущие по натянутому резиновому жгуту или по струне.

Примерами простых колебательных систем могут служить груз на пружине или математический маятник (рис.1).

Рис.1. Механические колебательные системы.

Механические колебания, как и колебательные процессы любой другой физической природы, могут быть свободными и вынужденными. Свободные колебания совершаются под действием внутренних сил системы, после того, как система была выведена из состояния равновесия. Колебания груза на пружине или колебания маятника являются свободными колебаниями. Колебания, происходящие под действием внешних периодически изменяющихся сил, называются вынужденными.

На рисунке 2 приведены графики координаты, скорости и ускорения тела, совершающего гармонические колебания.

Простейшим видом колебательного процесса являются простые гармонические колебания, которые описываются уравнением:

x = m cos (ωt + f 0 ).

Рис. 2. Графики координаты x(t), скорости υ (t)

и ускорения a(t) тела, совершающего

гармонические колебания.

Звуковыми волнами или просто звуком принято называть волны, воспринимаемые человеческим ухом.

Если в каком-нибудь месте твердой, жидкой или газообразной среды возбуждены колебания частиц, то вследствие взаимодействия атомов и молекул среды колебания начинают передаваться от одной точки к другой с конечной скоростью. Процесс распространения колебаний в среде называется волной.

Значительный интерес для практики представляют простые гармонические или синусоидальные волны. Они характеризуются амплитудой A колебания частиц, частотой f и длиной волны λ . Синусоидальные волны распространяются в однородных средах с некоторой постоянной скоростью υ .

Если бы зрение людей обладало способностью видеть звуковые, электромагнитные и радиоволны, то мы видели бы вокруг многочисленные синусоиды всевозможных видов.

Наверняка, каждый не раз наблюдал явление, когда опущенные в воду предметы сразу же меняли свои размеры и пропорции. Интересное явление, погружаешь в воду свою руку, и она сразу же превращается в руку какого-то другого человека. Почему так происходит? Ответ на этот вопрос и подробное объяснение этого явления как всегда дает физика – наука, которая может объяснить практически все, что нас окружает в этом мире.

Итак, на самом деле, при погружении в воду предметы, конечно же, не меняют ни своих размеров, ни своих очертаний. Это просто оптический эффект, то есть мы зрительно воспринимаем этот объект по-другому. Происходит это из-за свойства светового луча. Оказывается, на скорость распространения света в огромной мере влияет, так называемая оптическая плотность среды. Чем плотнее эта оптическая среда, тем медленнее распространяется луч света.

Но и изменение скорости луча света еще не объясняет в полной мере рассматриваемого нами явления. Существует и еще один фактор. Так вот, когда световой луч проходит границу между менее плотной оптической средой, например воздухом, и более плотной оптической средой, например водой, часть светового луча не проникает внутрь новой среды, а отражается от ее поверхности. Другая же часть светового луча проникает внутрь, но, уже меняя направление.

Это явление называется преломлением света, и ученые уже давно могут не просто наблюдать, но и точно рассчитывать угол этого преломления. Оказалось, что простейшие тригонометрические формулы и знание синуса угла падения и угла преломления дают возможность узнать постоянный коэффициент преломления для перехода светового луча из одной конкретной среды в другую. Например, коэффициент преломления воздуха чрезвычайно мал и составляет 1,0002926, коэффициент преломления воды чуть больше - 1,332986, алмаз преломляет свет с коэффициентом 2,419, а кремний - 4,010.

Данное явление лежит в основе, так называемой Теории радуги. Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

Радуга возникает из-за того, что солнечный свет испытывает преломление в капельках воды, взвешенных в воздухе по закону преломления:

,

где n 1 =1, n 2 ≈1,33 – соответственно показатели преломления воздуха и воды, α – угол падения, а β – угол преломления света.

2. Применение тригонометрии в искусстве и архитектуре.

С того времени как человек стал существовать на земле, основой улучшения быта и других сфер жизни стала наука. Основы всего, что создано человеком – это различные направления в естественных и математических науках. Одна из них – геометрия. Архитектура не единственная сфера науки, в которой используются тригонометрические формулы. Большинство композиционных решений и построений рисунков проходило именно с помощью геометрии. Но теоретические данные мало что значат. Рассмотрим пример на построение одной скульптуры французского мастера Золотого века искусства.

Пропорциональное соотношение в построении статуи было идеально. Однако при поднятии статуи на высокий пьедестал, она смотрелась уродливой. Скульптором не было учтено, что в перспективе к горизонту уменьшаются многие детали и при взгляде снизу вверх уже не создается впечатления ее идеальности. Велось множество расчетов, чтобы фигура с большой высоты смотрелась пропорционально. В основном они были основаны на методе визирования, то есть приблизительного измерения, на глаз. Однако коэффициент разности тех или иных пропорций позволили сделать фигуру более приближенной к идеалу. Таким образом, зная примерное расстояние от статуи до точки зрения, а именно от верха статуи до глаз человека и высоту статуи, можно рассчитать синус угла падения взгляда с помощью таблицы, тем самым найдем точку зрения (рис.4).

На рисунке 5 ситуация меняется, так как статую поднимают на высоту АС и НС увеличиваются, можно рассчитать значения косинуса угла С, по таблице найдем угол падения взгляда. В процессе можно рассчитать АН, а также синус угла С, что позволит проверить результаты с помощью основного тригонометрического тождества cos 2 + sin 2 = 1.

Сравнив измерения АН в первом и во втором случаи можно найти коэффициент пропорциональности. Впоследствии мы получим чертеж, а потом скульптуру, при поднятии которой зрительно фигура будет приближена к идеалу



Культовые здания во всем мире были спроектированы благодаря математике, которая может считаться гением архитектуры. Некоторые известные примеры таких зданий: Детская школа Гауди в Барселоне , Небоскрёб Мэри-Экс в Лондоне, Винодельня «Бодегас Исиос» в Испании , Ресторан в Лос-Манантиалесе в Аргентине . При проектировании этих зданий не обошлось без тригонометрии.

3. Тригонометрия в биологии.

Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов. Между движением небесных тел и живыми организмами на Земле существует связь. Живые организмы не только улавливают свет и тепло Солнца и Луны, но и обладают различными механизмами, точно определяющими положение Солнца, реагирующими на ритм приливов, фазы Луны и движение нашей планеты.

Биологические ритмы, биоритмы, - это более или менее регулярные изменения характера и интенсивности биологических процессов. Способность к таким изменениям жизнедеятельности передается по наследству и обнаружена практически у всех живых организмов. Их можно наблюдать в отдельных клетках, тканях и органах, целых организмах и популяциях. Биоритмы подразделяют на физиологические , имеющие периоды от долей секунды до нескольких минут и экологические, по длительности совпадающие с каким либо ритмом окружающей среды. К ним относят суточные, сезонные, годовые, приливные и лунные ритмы. Основной земной ритм – суточный, обусловлен вращением Земли вокруг своей оси, поэтому практически все процессы в живом организме обладают суточной периодичностью.

Множество экологических факторов на нашей планете, в первую очередь световой режим, температура, давление и влажность воздуха, атмосферное и электромагнитное поле, морские приливы и отливы, под влиянием этого вращения закономерно изменяются.

Мы на семьдесят пять процентов состоим из воды, и если в момент полнолуния воды мирового океана поднимаются на 19 метров над уровнем моря и начинается прилив, то вода, находящаяся в нашем организме так же устремляется в верхние отделы нашего тела. И у людей с повышенным давлением часто наблюдаются обострения болезни в эти периоды, а натуралисты, собирающие лекарственные травы, точно знают в какую фазу луны собирать «вершки – (плоды)», а в какую – «корешки».

Вы замечали, что в определенные периоды ваша жизнь делает необъяснимые скачки? Вдруг откуда не возьмись - бьют через край эмоции. Повышается чувствительность, которая внезапно может смениться полной апатией. Творческие и бесплодные дни, счастливые и несчастные моменты, резкие скачки настроения. Подмечено, что возможности человеческого организма меняются периодически. Эти знания лежат в основе «теории трех биоритмов».

Физический биоритм – регулирует физическую активность. В течение первой половины физического цикла человек энергичен, и достигает лучших результатов в своей деятельности (вторая половина – энергичность уступает лености).

Эмоциональный ритм – в периоды его активности повышается чувствительность, улучшается настроение. Человек становится возбудимым к различным внешним катаклизмам. Если у него хорошее настроение, он строит воздушные замки, мечтает влюбиться и влюбляется. При снижении эмоционального биоритма происходит упадок душевных сил, пропадает желание, радостное настроение.

Интеллектуальный биоритм - он распоряжается памятью, способностью к обучению, логическому мышлению. В фазе активности наблюдается подъем, а во второй фазе спад творческой активности, отсутствуют удача и успех.

Теория трех ритмов.


Тригонометрия встречается и в природе. Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tgx.

При полёте птицы траектория взмаха крыльев образует синусоиду.

4. Тригонометрия в медицине.

В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси, медики впервые получили возможность упорядочить информацию, относящуюся к электрической активности сердца или, другими словами, электрокардиографии.

Формула, получившая название тегеранской, была представлена широкой научной общественности на 14-й конференции географической медицины и затем - на 28-й конференции по вопросам применения компьютерной техники в кардиологии, состоявшейся в Нидерландах.

Эта формула представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, тем самым, постановку диагноза и начало собственно лечения.

Многим людям приходится делать кардиограмму сердца, но немногие знают, что кардиограмма человеческого сердца – график синуса или косинуса.

Тригонометрия помогает нашему мозгу определять расстояния до объектов. Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. Такой вывод был сделан после серии экспериментов, участникам которых предлагалось взглянуть на окружающий мир через призмы, увеличивающие этот угол.

Такое искажение приводило к тому, что подопытные носители призм воспринимали удаленные объекты как более близкие и не могли справиться с простейшими тестами. Некоторые из участников экспериментов даже наклонялись вперед, стремясь выровнять свое тело перпендикулярно неправильно представляемой поверхности земли. Однако по прошествии 20 минут они привыкли к искаженному восприятию, и все проблемы исчезли. Это обстоятельство указывает на гибкость механизма, с помощью которого мозг приспосабливает зрительную систему к меняющимся внешним условиям. Интересно заметить, что после того, как призмы были сняты, некоторое время наблюдался обратный эффект - переоценка расстояния.

Результаты нового исследования, как можно предположить, окажутся небезынтересны инженерам, конструирующим системы навигации для роботов, а также специалистам, которые работают над созданием максимально реалистичных виртуальных моделей. Возможны и приложения в области медицины, при реабилитации пациентов с повреждениями определенных областей мозга.

Заключение

В настоящее время тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела. Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Также следует отметить применение тригонометрии в таких областях, как теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, медицина (включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика, химия, теория чисел, сейсмология, метеорология, океанология, картография, многие разделы физики, топография и геодезия, архитектура, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография.

Выводы:

    Мы выяснили , что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

    Мы доказали , что тригонометрия тесно связана с физикой, биологией, встречается в природе, архитектуре и медицине.

    Мы думаем , что тригонометрия нашла отражение в нашей жизни, и сферы, в которых она играет важную роль, будут расширяться.

Литература

1. Алимов Ш.А. и др. "Алгебра и начала анализа" Учебник для 10-11 классов общеобразовательных учреждений, М., Просвещение, 2010.

2. Виленкин Н.Я. Функции в природе и техники: Кн. для внеклас. чтения IX - XX кл. – 2-е изд., испр.-М: Просвещение, 1985.

3. Глейзер Г.И. История математики в школе: IX - X кл. - М.: Просвещение, 1983.

4. Маслова Т.Н. «Справочник школьника по математике»

5. Рыбников К.А. История математики: Учебник. - М.: Изд-во МГУ, 1994.

6. Учеба. ru

7. Math . ru «библиотека»

МБОУ Целинная СОШ

Доклад Тригонометрия в реальной жизни

Подготовила и провела

учитель математики

квалификационной категории

Ильина В. П.

п. Целинный март 2014г.

Оглавление.

1.Введение .

2.История создания тригонометрии:

    Ранние века.

    Древняя Греция.

    Средневековье.

    Новое время.

    Из истории развития сферической геометрии.

3.Тригонометрия и реальная жизнь:

    Применение тригонометрии в навигации.

    Тригонометрия в алгебре.

    Тригонометрия в физике.

    Тригонометрия в медицине и биологии.

    Тригонометрия в музыке.

    Тригонометрия в информатике

    Тригонометрия в строительстве и геодезии.

4. Заключение .

5. Список литературы.

Введение

Издавна в математике установилась такая практика, что при систематическом изучении математики нам – ученикам приходится встречаться с тригонометрией трижды. Соответственно её содержание представляется состоящим из трёх частей. Эти части при обучении отделены друг от друга по времени и не похожи друг на друга как по смыслу, вкладываемому в объяснения основных понятий, так и по развиваемому аппарату и по служебным функциям (приложениям).

И в самом деле, впервые тригонометрический материал мы встретили в 8 классе при изучении темы «Соотношения между сторонами и углами прямоугольного треугольника». Так мы узнали, что такое синус, косинус и тангенс, научились решать плоские треугольники.

Однако прошло некоторое время и в 9-м классе мы снова вернулись к тригонометрии. Но эта тригонометрия не похожа на ту, что изучали ранее. Её соотношения определяются теперь с помощью окружности (единичной полуокружности), а не прямоугольного треугольника. Хотя они по-прежнему определяются как функции углов, но эти углы уже произвольно велики.

Перейдя же в 10 класс, мы снова столкнулись с тригонометрией и увидели, что она стала ещё сложнее, ввелось понятие радианная мера угла, иначе выглядят и тригонометрические тождества, и постановка задач, и трактовка их решений. Вводятся графики тригонометрических функций. Наконец, появляются тригонометрические уравнения. И весь этот материал предстал перед нами уже как часть алгебры, а не как геометрия. И нам стало очень интересно изучить историю тригонометрии, её применение в повседневной жизни, потому что использование учителем математики исторических сведений не является обязательным при изложении материала урока. Однако, как указывает К. А. Малыгин «...экскурсы в историческое прошлое оживляют урок, дают разрядку умственному напряжению, поднимают интерес к изучаемому материалу и способствуют прочному его усвоению» . Тем более что материал по истории математики весьма обширен и интересен, так как развитие математики тесным образом связано с решением насущных задач, возникавших во все периоды существования цивилизации.

Узнав об исторических причинах возникновения тригонометрии, и изучив, как плоды деятельности великих ученых оказали влияние на развитие этой области математики и на решение конкретных задач, у нас, у школьников, повышается интерес к изучаемому предмету, и мы увидим его практическое значение.

Цель проекта - развитие интереса к изучению темы «Тригонометрия» в курсе алгебры и начала анализа через призму прикладного значения изучаемого материала; расширение графических представлений, содержащих тригонометрические функции; применение тригонометрии в таких науках, как физика, биология и т.п.

Связь тригонометрии с окружающим миром, значение тригонометрии в решении многих практических задач, графические возможности тригонометрических функций позволяют «материализовать» знания школьников. Это позволяет лучше понять жизненную необходимость знаний, приобретаемых при изучении тригонометрии, повышает интерес к изучению данной темы.

Задачи исследования:

1.Рассмотреть историю возникновения и развития тригонометрии.

2.Показать на конкретных примерах практические приложения тригонометрии в различных науках.

3.Раскрыть на конкретных примерах возможности использования тригонометрических функций, позволяющие «мало интересные» функции превращать в функции, графики которых имеют весьма оригинальный вид.

« Одно осталось ясно, что мир устроен грозно и прекрасно».

Н. Рубцов

Тригонометрия - это раздел математики, в котором изучаются зависимости между величинами углов и длинами сторон треугольников, а также алгебраические тождества тригонометрических функций. Сложно представить, но с этой наукой мы сталкиваемся не только на уроках математики, но и в нашей повседневной жизни. Мы могли не подозревать об этом, но тригонометрия встречается в таких науках, как физика, биология, не последнюю роль она играет и в медицине, и, что самое интересное, без нее не обошлось даже в музыке и архитектуре. Значительную роль в развитии навыков применения на практике теоретических знаний, полученных при изучении математики, играют задачи с практическим содержанием. Каждого изучающего математику, интересует, как и где применяются полученные знания. Ответ на этот вопрос и дает данная работа.

История создания тригонометрии

Ранние века

От вавилонской математики ведёт начало привычное нам измерение углов градусами, минутами и секундами (введение этих единиц в древнегреческую математику обычно приписывают , II век до н. э.).

Главным достижением этого периода стало соотношение катетов и гипотенузы в прямоугольном треугольнике, позже получившее имя .

Древняя Греция

Общее и логически связное изложение тригонометрических соотношений появилось в древнегреческой геометрии. Греческие математики ещё не выделяли тригонометрию как отдельную науку, для них она была частью астрономии.
Основным достижением античной тригонометрической теории стало решение в общем виде задачи «решения треугольников», то есть нахождения неизвестных элементов треугольника, исходя из трёх заданных его элементов (из которых хотя бы один является стороной).


Средневековье

В IV веке, после гибели античной науки, центр развития математики переместился в Индию. Они изменили некоторые концепции тригонометрии, приблизив их к современным: к примеру, они первыми ввели в использование косинус.
Первым специализированным трактатом по тригонометрии было сочинение среднеазиатского учёного (X-XI век) «Книга ключей науки астрономии» (995-996 годы). Целый курс тригонометрии содержал главный труд Аль-Бируни - «Канон Мас‘уда» (книга III). В дополнение к таблицам синусов (с шагом 15") Аль-Бируни дал таблицы тангенсов (с шагом 1°).

После того как арабские трактаты были в XII-XIII веках переведены на латынь, многие идеи индийских и персидских математиков стали достоянием европейской науки. По всей видимости, первое знакомство европейцев с тригонометрией состоялось благодаря зиджу , два перевода которого были выполнены в XII веке.

Первым европейским сочинением, целиком посвященным тригонометрии, часто называют «Четыре трактата о прямых и обращенных хордах» английского астронома (около 1320 г.). Тригонометрические таблицы, чаще переводные с арабского, но иногда и оригинальные, содержатся в сочинениях ряда других авторов XIV-XV веков. Тогда же тригонометрия заняла место среди университетских курсов.

Новое время

Слово «тригонометрия» впервые встречается (1505 г) в заглавии книги немецкого теолога и математика Питискуса.Происхождение этого слова греческое: треугольник, мера. Иными словами, тригонометрия-наука об измерении треугольников. Хотя название возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны уже две тысячи лет назад.

Длительную историю имеет понятие синуса. Фактически различные отношения отрезков треугольника и окружности(а по существу, и тригонометрические функции) встречаются уже в ӀӀӀ в. до н. э в работах великих математиков Древней Греции-Евклида, Архимеда, Аполлония Пергского. В римский период эти отношения уже достаточно систематично исследовались Менелаем(Ӏ в. до н. э), хотя и не приобрели специального названия. Современный минус угла, например изучался как произведение полухорд, на которую опирается центральный угол величиной, или как хорда удвоенной дуги.

В последующий период математика долгое время наиболее активно развивалась индийскими и арабскими учеными. В Ӏ V - V вв. появился, в частности, уже специальный термин в трудах по астрономии великого индийского ученого Ариабхаты(476-ок. 550), именем которого назван первый индийский спутник Земли.

Позднее привилось более краткое название джива. Арабскими математиками в Ι X в. слово джива(или джиба) было заменено на арабское слово джайб(выпуклость). При переводе арабских математических текстов в XΙΙ в. это слово было заменено латинским синус(sinus -изгиб, кривизна)

Слово косинус намного моложе. Косинус-это сокращение латинского выражения complement sinus , т.е «дополнительный синус» (или иначе «синус дополнительной дуги»; вспомните cos a = sin (90°- a )).

Имея дело с тригонометрическими функциями, мы существенно выходим за рамки задачи «измерения треугольников». По этому известный математик Ф. Клейн (1849-1925) предлагал учение о «тригонометрических» функциях называть иначе- гониометрией(угол). Однако это название не привилось.

Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс(а также котангенс, секанс и косеканс) введен в X в. арабским математиком Абу-л-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты в XΙV в. сначала английским ученым Т. Бравердином, а позднее немецким математиком, астрономом Региомонтаном (1467 г). Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (вспомните: линия тангенсов - это касательная к единичной окружности)

Современные обозначения arcsin и arctg появляются в 1772 г в работах венского математика Шерфера и известного французского ученого Ж.Л.Лагранжа, хотя несколько ранее их уже рассматривал Я.Бернулли, который употреблял иную символику. Но общепринятыми эти символы стали лишь в конце XVΙΙΙ столетия. Приставка «арк» происходит от латинского arcus x , например -,это угол (а можно сказать, и дуга),синус которого равен x .

Длительное время тригонометрия развивалась как часть геометрии, т.е. факты, которые мы сейчас формулируем в терминах тригонометрических функций, формулировались и доказывались с помощью геометрических понятий и утверждений. Пожалуй,наибольшие стимулы к развитию тригонометрии возникали в связи с решением задач астрономии, что представляло большой практический интерес(например, для решения задач определения местонахождения судна, предсказаний затмений и т,д)

Астрономов интересовали соотношения между сторонами и углами сферических треугольников, составленных из больших кругов, лежащих на сфере. И надо заметить, что математики древности удачно справлялись с задачами, существенно более трудными, нежели задачи на решении плоских треугольников.

Во всяком случае в геометрической форме многие известные нам формулы тригонометрии открывались и переоткрывались древнегреческими, индийскими, арабскими математиками(правда, формулы разности тригонометрических функций стали известны только в XVΙ Ӏ в.- их вывел английский математик Непер для упрощения вычислений с тригонометрическими функциями. А первый рисунок синусоиды появился в 1634 г.)

Принципиальное значение имело составление К.Птолемеем первой таблицы синусов (долгое время она называлась таблицей хорд): появилось практическое средство решения ряда прикладных задач, и в первую очередь задач астрономии.

Имея дело с готовыми таблицами, или пользуясь калькулятором, мы часто не задумываемся о том, что было время, когда таблицы еще не были изобретены. Для того чтобы составить их, требовалось выполнить не только большой объем вычислений, но и придумать способ составления таблиц. Таблицы Птолемея точны до пяти десятичных знаков включительно.

Современный вид тригонометрии придал крупнейший математик XV ΙӀΙ столетия Л.Эйлер(1707-1783), швейцарец по происхождению, долгие годы работавший в России и являвшийся членом Петербургской Академии наук. Именно Эйлер первый ввел известные определения тригонометрических функций, стал рассматривать функции произвольного угла, получил формулы приведения. Все это малая доля того, что за долгую жизнь успел сделать Эйлер в математике: он оставил свыше 800 работ,доказал многие ставшие классическими теоремы, относящиеся к самым разным областям математики. Но если вы пытаетесь оперировать с тригонометрическими функциями в геометрической форме, т.е так, как это делали многие поколения математиков до Эйлера, то сумеете оценить заслуги Эйлера в систематизации тригонометрии. После Эйлера тригонометрия приобрела новую форму исчисления: различные факты стали доказывать путем формального применения формул тригонометрии, доказательства стали намного компактнее, проще.

Из истории развития сферической геометрии .

Широко известно, что евклидова геометрия является одной из наиболее древних наук.: уже в III веке до н.э. появился классический труд Евклида – «Начала». Менее известно, что сферическая геометрия лишь немного моложе. Её первая систематическая изложение относится к I - II векам. В книге «Сферика», написанной греческим математиком Менелаем (I в.), изучались свойства сферических треугольников; доказывалась, в частности, что сумма углов сферического треугольника больше 180 градусов. Большой шаг вперед сделал другой греческий математик Клавдий Птолемей (II в.). По существу он первый составил таблицы тригонометрических функций, ввел стереографическую проекцию.

Так же как и геометрия Евклида, сферическая геометрия возникла при решении задач практического характера, и в первую очередь задач астрономии. Эти задачи были необходимы, например, путешественникам и мореплавателям, которые ориентировались по звездам. А поскольку при астрономических наблюдениях удобно считать, что и Солнце и Луна, и звезды движутся по изображаемой «небесной сфере», то естественно, что для изучения их движения потребовались знания о геометрии сферы. Не случайно поэтому, что самая известная работа Птолемея называлась « Великое математическое построение астрономии в 13 книгах».

Важнейший период истории сферической тригонометрии связан с деятельностью ученых Ближнего Востока. Индийские ученые успешно решали задачи сферической тригонометрии. Однако метод, описанный Птолемеем и основанный на теореме Менелая полного четырехугольника, у них не применялся. И в сферической тригонометрии они пользовались проективными методами, которые соответствовали методам из «Аналеммы» Птолемея. В результате ими был получен набор определенных вычислительных правил, позволявших решить практически любую задачу сферической астрономии. С их помощью такая задача сводилась в конечном счете к сравнению между собой подобных плоских прямоугольных треугольников. При решений нередко применялись теория квадратных уравнений и метод последовательных приближений. Примером астрономической задачи, которую решали индийские ученые с помощью разработанных им правил, служит задачам, рассматриваемая в сочинении «Панга сиддхантика» Варахамихиры (V - VI ). Она состоит нахождении высоты Солнца, если известно широта места, склонения Солнца и его часовой угол. В результате решения этой задачи после ряда построений устанавливается соотношение, которое равносильно современной теореме косинусов для сферического треугольника. Однако и это соотношение, и другое,эквивалентное теореме синусов, не были обобщены как правила, применимые к любому сферическому треугольнику.

Среди первых восточных ученных, которые обратились к обсуждению теореме Менелая, нужно назвать братьев Бану Мусса –Мухаммеда, Хасана и Ахмада, сыновей Муссы ибн Шакира, работавшего в Багдаде и занимавшегося математикой, астрономией и механикой. Но наиболее ранним из сохранившихся сочинений о теоремы Менелая является «Трактат о фигуре секущих» их ученика Сабита ибн Корры (836-901)

Трактат Сабита ибн Корры дошел до нас в арабском оригинале,. И в латинском переводе XII в. Этот перевод Герандо Кремонским (1114-1187), получил широкое распространение в Средневековой Европе.

История тригонометрии, как науки о соотношениях между углами и сторонами треугольника и других геометрических фигур, охватывает более двух тысячелетий. Большинство таких соотношений нельзя выразить с помощью обычных алгебраических операций, и поэтому понадобилось ввести особые тригонометрические функции, первоначально оформлявшиеся в виде числовых таблиц.
Историки полагают, что тригонометрию создали древние астрономы, немного позднее её стали использовать в архитектуре. Со временем область применения тригонометрии постоянно расширялась, в наши дни она включает практически все естественные науки, технику и ряд других областей деятельности.

Прикладные тригонометрические задачи отличаются большим разнообразием - например, могут быть заданы измеримые на практике результаты действий над перечисленными величинами (к примеру, сумма углов или отношение длин сторон).

Параллельно с развитием тригонометрии плоскости греки, под влиянием астрономии, далеко продвинули сферическую тригонометрию. В «Началах» Евклида на эту тему имеется только теорема об отношении объёмов шаров разного диаметра, но потребности астрономии и картографии вызвали быстрое развитие сферической тригонометрии и смежных с ней областей - системы небесных координат, теории картографических проекций, технологии астрономических приборов.

курсов.

Тригонометрия и реальная жизнь

Тригонометрические функции нашли применение в математическом анализе, физике, информатике, геодезии, медицине, музыке, геофизике, навигации.

Применение тригонометрии в навигации

Навигация (это слово происходит от латинского navigatio – плыву на судне) – одна из наиболее древних наук. Простейшие задачи навигации, такие, например, как определение кратчайшего маршрута, выбор направления движения, встали перед самыми первыми мореплавателями. В настоящее время эти же и другие задачи приходится решать не только морякам, но и лётчикам, и космонавтам. Некоторые понятия и задачи навигации рассмотрим поподробнее.

Задача. Известны географические координаты – широта и долгота пунктов А и В земной поверхности: , и, . Требуется найти кратчайшее расстояние между пунктами А и В вдоль земной поверхности (радиус Земли считается известным: R = 6371 км)

Решение. Напомним сначала, что широтой пункта М земной поверхности называется величина угла, образованного радиусом ОМ, где О – центр Земли, с плоскостью экватора: ≤ , причем севру от экватора широта считается положительной, а к югу – отрицательной (рисунок 1)

Долгота пункта М есть величина двугранного угла между плоскостями СОМ и СОН, где С – Северный полюс Земли, а Н – точка, отвечающая гринвичской обсерватории: ≤ (к востоку от гринвичского меридиана долгота считается положительной, к западу – отрицательной).

Как уже известно, кратчайшее расстояние между пунктами А и В земной поверхности- это длина меньшей из дуг большой окружности, соединяющая А и В (такую дугу называют ортодромией – в переводе с греческого означает «прямой бег»). Поэтому наша задача сводится к определению длины стороны АВ сферического треугольника АВС (С – северный полюс).

Применяя стандартное обозначение для элементов треугольника АВС и соответствующего трехгранного угла ОАВС, из условия задачи находим: α = = - , β = (рис.2).

Угол С также не трудно выразить через координаты точек А и В. По определению ≤ , поэтому либо угол С = , если ≤ , либо - , если. Зная = с помощью теоремы косинусов: = + (-). Зная и, следовательно угол, находим искомое расстояние: =.

Тригонометрия в навигации 2.

Для прокладки курса корабля на карте, выполненной в проекции Герхарда Меркатора (1569г.), необходимо было определять широту. При плавании по Средиземному морю в лоциях до XVII в. широта не указывалась. Впервые применил тригонометрические расчеты в навигации Эдмонд Гюнтер(1623).

Тригонометрия помогает рассчитывать влияние ветра на полет самолета. Треугольник скоростей – это треугольник, образованный вектором воздушной скорости (V ), вектором ветра(W ), вектором путевой скорости (V п ). ПУ – путевой угол, УВ – угол ветра, КУВ – курсовой угол ветра.

Зависимость между элементами навигационного треугольника скоростей имеет вид:

V п = V cos УС + W cos УВ; sin УС = * sin УВ, tg УВ =

Навигационный треугольник скоростей решается с помощью счетных устройств, на навигационной линейке и приближенно в уме.

Тригонометрия в алгебре.

Вот пример решения сложного уравнения с помощью тригонометрической подстановки.

Дано уравнение

Пусть , получим

;

откуда: или

с учётом ограничений получим:

Тригонометрия в физике

Везде, где приходится иметь дело с периодическими процессами и колебаниями – будь то акустика, оптика или качание маятника, мы имеем дело с тригонометрическими функциями. Формулы колебаний:

где A – амплитуда колебания, - угловая частота колебания, -начальная фаза колебания

Фаза колебания.

При погружении предметов в воду они не меняют ни формы, ни размеров. Весь секрет - оптический эффект который заставляет наше зрение воспринимать объект по-иному. Простейшие тригонометрические формулы и значения синуса угла падения и преломления луча дают возможность высчитать постоянный коэффициент преломления при переходе светового луча из среды в среду. Например, радуга возникает из-за того, что солнечный свет испытывает преломление в капельках воды, взвешенных в воздухе по закону преломления:

sin α / sin β = n 1 / n 2

где:

n 1 - показатель преломления первой среды
n 2 - показатель преломления второй среды

α -угол падения, β -угол преломления света.

Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром.

Сила, действующая на движущуюся в магнитном поле заряженную частицу, называется силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы.

В качестве практического примера рассмотрим физическую задачу, которая решается с применением тригонометрии.

Задача. На наклонной плоскости, составляющей с горизонтом угол 24,5 о , находится тело массой 90 кг. Найдите, с какой силой это тело давит на наклонную плоскость (т.е какое давление оказывает тело на эту плоскость).

Решение:

Обозначив оси Х и У, начнем строить проекции сил на оси, для начала воспользовавшись данной формулой:

ma = N + mg , затем смотрим на рисунок,

Х : ma = 0 + mg sin24,5 0

Y: 0 = N – mg cos24,5 0

N = mg cos 24,5 0

подставляем массу, находим, что сила равна 819 Н.

Ответ: 819 Н

Тригонометрия в медицине и биологии

Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов.

Биологические ритмы, биоритмы – это более или менее регулярные изменения характера и интенсивности биологических процессов.

Основной земной ритм – суточный.

Модель биоритмов можно построить с помощью тригонометрических функций.

Для построения модели биоритмов необходимо ввести дату рождения человека, дату отсчета (день, месяц, год) и длительность прогноза (количество дней).

Даже некоторые участки головного мозга называются синусами.

Стенки синусов образованы твёрдой мозговой оболочкой, выстланной эндотелием. Просвет синусов зияет, клапаны и мышечная оболочка, в отличие от других вен, отсутствуют. В полости синусов располагаются покрытые эндотелием волокнистые перегородки. Из синусов кровь поступает во внутренние ярёмные вены, помимо этого существует связь синусов с венами наружной поверхности черепа посредством резервных венозных выпускников.

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения.

При плавании тело рыбы принимает форму кривой, которая напоминает график

функции y = tgx .

Тригонометрия в музыке

Мы слушаем музыку в формате mp3.

Звуковой сигнал – это волна, вот её «график».

Как можно увидеть – это хотя и очень сложная, но синусоида, подчиняющаяся законам тригонометрии.

Во МХАТе весной 2003 года состоялась презентация альбома «Тригонометрия» группы «Ночные снайперы», солистка Диана Арбенина. Содержание альбома раскрывает первоначальное значение слова «тригонометрия» - измерение Земли.

Тригонометрия в информатике

Тригонометрические функции можно использовать для точных расчётов.

С помощью тригонометрических функций можно приблизить любую

(в некотором смысле "хорошую") функцию, разложив её в ряд Фурье:

a 0 + a 1 cos x + b 1 sin x + a 2 cos 2x + b 2 sin 2x + a 3 cos 3x + b 3 sin 3x + ...

Подбирая подходящим образом числа a 0 , a 1 , b 1 , a 2 , b 2 , ..., можно в виде такой (бесконечной) суммы представлять почти любые функции в компьютере с требуемой точностью.

Тригонометрические функции оказываются полезными при работе с графической информацией. Необходимо промоделировать (описать в компьютере) вращение некоторого объекта вокруг некоторой оси. Возникает поворот на некоторый угол. Чтобы определить при этом координаты точек придётся умножать на синусы и косинусы.

Джастин Уиндел, программист и дизайнер из Google Grafika Lab , опубликовал демо, показывающее примеры использования тригонометрических функций для создания динамической анимации.

Тригонометрия в строительстве и геодезии

Длины сторон и величины углов произвольного треугольника на плоскости связаны между собой определенными соотношениями, важнейшие из которых называют теоремами косинусов и синусов.

2 ab

= =

В этих формулах а, b , c – длины сторон треугольника АВС, лежащих соответственно против углов А, В, С. Эти формулы позволяют по трем элементам треугольника – длинам сторон и углам – восстановить остальные три элемента. Они применяются при решении практических задач, например в геодезии.

Вся "классическая" геодезия основана на тригонометрии. Поскольку фактически с древних времён геодезисты занимаются тем, что "решают" треугольники.

Процесс строительства зданий, дорог, мостов и других сооружений начинается с изыскательских и проектных работ. Все измерения на стройке проводятся с помощью геодезических инструментов, таких как теодолит и тригонометрический нивелир. При тригонометрическом нивелировании определяют разность высот между несколькими точками земной поверхности.

Заключение

    Тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

    Тригонометрия тесно связана с физикой, встречается в природе, музыке, архитектуре, медицине и технике.

    Тригонометрия нашла отражение в нашей жизни, и сферы, в которых она играет важную роль, будут расширяться, поэтому знание её законов необходимо каждому.

    Связь математики с окружающим миром позволяет «материализовать» знания школьников. Это помогает нам лучше понять жизненную необходимость знаний, приобретаемых в школе.

    Под математической задачей с практическим содержанием (задачей прикладного характера) мы понимаем задачу, фабула которой раскрывает приложения математики в смежных учебных дисциплинах, технике, в быту.

    Рассказ о исторических причинах возникновения тригонометрии, ее развитии и практическом применении побуждает у нас – школьников интерес к изучаемому предмету, формирует наше мировоззрение и повышает общую культуру.

Данная работа будет полезна для учащихся старших классов, которые ещё не увидели всю красоту тригонометрии и не знакомы с областями её применения в окружающей жизни.

Список литературы:

Тригонометрия в медицине

Руководитель: Козлова Людмила Васильевна

Цель работы: Изучить использование тригонометрии в медицине. После проделанной работы, я изучила использование тригонометрии в медицине: составление биоритмов человека, кардиологии. Она дает основу для составлений формул органов человека, что впоследствии поможет лечить любые заболевания. Данная работа рассказывает, в каких именно сферах медицины применяются знания по тригонометрии. Благодаря этой работе я выяснила основные принципы чтения электрокардиограммы и самостоятельно смогу отличить нормальный результат обследования, от ярких отклонений.

ВВЕДЕНИЕ

Актуальность: Впервые с тригонометрией я столкнулась в восьмом классе, когда мы начали изучать азы этого раздела математики. Простейшие правила определения синуса и косинуса показались мне очень легкими, поэтому не вызвали особого интереса. Позднее, когда я начала учиться в десятом классе, то было ясно сразу, что тригонометрия- это огромный раздел математики, объединяющий большое количество знаний и теории. В дальнейшем я выяснила, что знания о тригонометрии очень универсальные для всех областей деятельности. Они имеют широкое применение в астрономии, географии, теории музыки, анализ финансовых рынков, электроники, теории вероятности, статистике, биологии, медицине, фармацевтики, химии, криптографии и многие другие.

Тригономе́трия (от греч. τρίγωνον (треугольник) и греч. μέτρεο (меряю), то есть измерение треугольников) - раздел математики, в котором изучаются тригонометрические функции и их использование в геометрии.

Термин «тригонометрия» ввел в употребление в 1595 немецкий математик и богослов Варфоломей Питиск, автор учебника по тригонометрии и тригонометрических таблиц. К концу 16 в. большинство тригонометрических функций было уже известно, хотя само это понятия еще не существовало.

Ученые обрабатывали данные измерений, чтобы вести календарь и правильно определять время начала сева и сбора урожая, даты религиозных праздников. По звездам вычисляли местонахождение корабля в море или направление движения каравана в пустыне. Как известно, тригонометрия применяется не только в математике, но и в других сферах науки. Данная работа рассказывает, в каких именно сферах медицины применяются знания по геометрии.

Одно из главных применений - кардиология. Аппараты ЭКГ снимают кардиограмму у людей, фиксируя удары сердца. После общения со специалистом по чтению графиков электрокардиограммы я выяснила, что график является измененной синусоидой. И здесь важна каждая неровность графика. Количество интервалов и зубцов, максимум и минимум скачков, протяженность периодов: все это играет важную роль в определении диагноза и правильности лечения.

ОСНОВНОЕ СОДЕРЖАНИЕ

ЦЕЛЬ: Изучить использование тригонометрии в медицине.

ЗАДАЧИ:

    Изучить историю тригонометрии.

    Выяснить, в каких сферах медицины применяется тригонометрия.

    Выполнить практическую часть работы, выяснить принцип, на который опираются врачи-кардиологи, читая график электрокардиограммы.

1.2.ИСТОРИЯ

Первые тригонометрические таблицы видимо были составлены Гиппархом, который сейчас известен как «отец тригонометрии».

Древнегреческие математики в своих построениях, связанных с измерением дуг круга, использовали технику хорд. Перпендикуляр к хорде, опущенный из центра окружности, делит пополам дугу и опирающуюся на неё хорду. Половина поделенной пополам хорды - это синус половинного угла, и поэтому функция синус известна также как «половина хорды». Для компенсации отсутствия таблицы хорд математики, времен Аристарха, иногда использовали хорошо известную теорему, в современной записи -

где 0° < β < α < 90°,

Первые тригонометрические таблицы были, вероятно, составлены Гиппархом Никейским (180-125 лет до н. э.). Гиппарх был первым, кто свёл в таблицы соответствующие величины дуг и хорд для серии углов. Систематическое использование полной окружности в 360° установилось в основном благодаря Гиппарху.

Позднее Клавдий Птолемей (90 - 168 г. н. э.) в «Альмагесте» расширил Гиппарховы «Хорды в окружности». Тринадцать книг «Альмагеста» - самая значимая тригонометрическая работа всей античности. Позже Птолемей вывел формулу половинного угла. Птолемей использовал эти результаты для создания своих тригонометрических таблиц, которые не сохранились до наших дней.

Замена хорд синусами стала главным достижением средневековой Индии. С VIII века учёные стран Ближнего и Среднего Востока развили тригонометрию. После того как трактаты мусульманских ученых были переведены на латынь, многие идеи стали достоянием европейской и мировой науки.

2. ТРИГОНОМЕТРИЯ В МЕДИЦИНЕ

2.1.БИОРИТМЫ

Биоритмы - периодически повторяющиеся изменения характера и интенсивности биологических процессов и явлений. Они свойственны живой материи на всех уровнях ее организации- от молекулярных до биосферы. Одни биологические ритмы относительно самостоятельны (частота сокращений сердца, дыхания), другие связаны с приспособлением организмов к геофизическим циклам - суточным (колебания интенсивности деления клеток, обмена веществ) .

Человек со дня рождения находится в трех , биоритмах : физическом, эмоциональном и интеллектуальном.

    Физический цикл равен 23 дням. Он определяет энергию человека, его силу, выносливость, координацию движения.

    Эмоциональный цикл (28 дня) обусловливает состояние нервной системы и настроение.

    Интеллектуальный цикл (33 дня) определяет творческую способность личности.

Любой из циклов состоит из двух полупериодов, положительного и отрицательного.

    В течение первой половины физического цикла человек энергичен и достигает лучших результатов в своей деятельности; во второй половине цикла энергичность уступает лености.

    В первой половине эмоционального цикла человек весел, агрессивен, оптимистичен, переоценивает свои возможности, во второй половине - раздражителен, легко возбудим, недооценивает свои возможности, пессимистичен, все критически анализирует.


Рис.1. Биоритмы

Модель биоритмов строят с помощью графиков тригонометрических функций. В интернете находится огромное количество сайтов, которые занимаются расчетом биоритмов. Для этого необходимо ввести дату рождения человека (день, месяц, год) и длительность прогноза.

2.2. ФОРМУЛА СЕРДЦА

В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси, медики впервые получили возможность упорядочить информацию, относящуюся к электрокардиографии.

Формула, получившая название тегеранской, представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, постановку диагноза и начало лечения .

На данный момент не известна точная информация касающегося вопроса, ведутся активные работы и исследования по данной теме.

Российские ученые вывели математическую формулу сердца. Благодаря этим уравнениям можно высчитать, спрогнозировать и предотвратить любое сердечное заболевание. Единственная в России лаборатория математической физиологии действует при Екатеринбургском Институте иммунологии и физиологии.

Проблема математических описаний физиологических функций организма – вторая по значимости проблема после проблемы ДНК человека. В будущем будут вычислены формулы других органов человека, и медики с помощью элементарных уравнений смогут прогнозировать и лечить любую болезнь.

Человек - сложнейший механизм, в котором непрерывно происходят физические и химические процессы. Если все процессы, перевести на язык уравнений, то можно будет вывести единую формулу человека.

Математики создали модель сердечной мышцы, которую биологи виртуально соединили с настоящей живой тканью. В компьютерной программе ученые задают сердцу различные нагрузки и наблюдают, как оно ведет себя. Изучив всевозможные алгоритмы, имитирующие деятельность сердца, ученые смогут делать реальные прогнозы.

2. 3. ЭЛЕКТРОКАРДИОГРАММА

Примененный в практических целях в 70-х годах 19 века англичанином А.Уоллером аппарат, записывающий электрическую активность сердца, продолжает служить человеку и по сей день. Электрокардиограф позволяет выявить явные отклонения от нормального ритма сердца, такие как Инфаркт миокарда, Ийшемическая болезнь сердца, синусовая брадикардия, тахекардия,аритмия, синдром слабости синусового узла и т.п. Как же отличить нормальные снимки ЭКГ от ярко выраженных заболеваний?.

3.ПРАКТИЧЕСКАЯ ЧАСТЬ РАБОТЫ

После того, как мне удалось пообщаться со специалистом расшифровки кардиограммы в нашей больнице, я узнала множество полезной информации для моей исследовательской работы.

График электрокардиограммы является измененной синусоидой. И здесь важна каждая неровность графика. Количество интервалов и зубцов, максимум и минимум скачков, протяженность периодов: все это играет важную роль в определении диагноза и правильности лечения. Поэтому график ЭКГ всегда печатается на миллиметровой бумаге.

При расшифровке результатов ЭКГ проводят измерение продолжительности интервалов между ее составляющими. Этот расчет необходим для оценки частоты ритма, где форма и величина зубцов в разных отведениях будет показателем характера ритма, происходящих электрических явления в сердце и электрической активности отдельных участков миокарда, то есть, электрокардиограмма показывает, как работает наше сердце в тот или иной период.

Более строгая расшифровка ЭКГ производиться с помощью анализа и расчета площади зубцов при использовании специальных отведений, однако в практике, обходятся показателем направления электрической оси, которая представляет собой суммарный вектор.

Существуют разные способы расшифровки ЭКГ. Некоторые специалисты основываются на формулы и рассчитывают все по ним; так частоту сердечных сокращений можно вычислить по формуле: где R - R длительность интервала, а некоторые пользуются готовыми данными, что тоже не запрещает отечественная медицина. На рисунке 2 представлены результаты расчетов ЧСС в зависимости от интервала.


Рис.2

Рис.2. Оценка ЧЧС

Рис.3. Виды кардиограмм

На рис.3 представлены три вида кардиограммы. Первая кардиограмма здорового человека, вторая, того же человека, только с синусовой тахикардией, после физической нагрузки, а третья кардиограмма больного человека с синусовой аритмией.

ВЫВОД:

После проделанной работы, я изучила использование тригонометрии в медицине: составление биоритмов человека, кардиологии. Она дает основу для составлений формул органов человека, что впоследствии поможет лечить любые заболевания. Благодаря этой работе я выяснила основные принципы чтения электрокардиограммы и самостоятельно смогу отличить нормальный результат обследования, от ярких отклонений.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

    Электрокардиография: Учебн. пособие. -5-е издание. – М.: МЕДпресс-информ, 2001. – 312с., ил.

    Интернет источники: Анатомия коронального клапана/Профессор, доктор мед. наук Ю.П. Островский

Синус, косинус, тангенс - при произнесении этих слов в присутствии учеников старших классов можно быть уверенным, что две трети из них потеряют интерес к дальнейшему разговору. Причина кроется в том, что основы тригонометрии в школе преподаются в полном отрыве от реальности, а потому учащиеся не видят смысла в изучении формул и теорем.

В действительности данная область знаний при ближайшем рассмотрении оказывается весьма интересной, а также прикладной - тригонометрия находит применение в астрономии, строительстве, физике, музыке и многих других областях.

Ознакомимся с основными понятиями и назовем несколько причин изучить этот раздел математической науки.

История

Неизвестно, в какой момент времени человечество начало создавать будущую тригонометрию с нуля. Однако документально зафиксировано, что уже во втором тысячелетии до нашей эры египтяне были знакомы с азами этой науки: археологами найден папирус с задачей, в которой требуется найти угол наклона пирамиды по двум известным сторонам.

Более серьезных успехов достигли ученые Древнего Вавилона. На протяжении веков занимаясь астрономией, они освоили ряд теорем, ввели особые способы измерения углов, которыми, кстати, мы пользуемся сегодня: градусы, минуты и секунды были заимствованы европейской наукой в греко-римской культуре, в которую данные единицы попали от вавилонян.

Предполагается, что знаменитая теорема Пифагора, относящаяся к основам тригонометрии, была известна вавилонянам почти четыре тысячи лет назад.

Название

Дословно термин «тригонометрия» можно перевести как «измерение треугольников». Основным объектом изучения в рамках данного раздела науки на протяжении многих веков был прямоугольный треугольник, а точнее - взаимосвязь между величинами углов и длинами его сторон (сегодня с этого раздела начинается изучение тригонометрии с нуля). В жизни нередки ситуации, когда практически измерить все требуемые параметры объекта (или расстояние до объекта) невозможно, и тогда возникает необходимость недостающие данные получить посредством расчётов.

Например, в прошлом человек не мог измерить расстояние до космических объектов, а вот попытки эти расстояния рассчитать встречаются задолго до наступления нашей эры. Важнейшую роль играла тригонометрия и в навигации: обладая некоторыми знаниями, капитан всегда мог сориентироваться ночью по звездам и скорректировать курс.

Основные понятия

Для освоения тригонометрии с нуля требуется понять и запомнить несколько основных терминов.

Синус некоторого угла - это отношение противолежащего катета к гипотенузе. Уточним, что противолежащий катет - это сторона, лежащая напротив рассматриваемого нами угла. Таким образом, если угол составляет 30 градусов, синус этого угла всегда, при любом размере треугольника, будет равен ½. Косинус угла - это отношение прилежащего катета к гипотенузе.

Тангенс - это отношение противолежащего катета к прилежащему (либо, что то же самое, отношение синуса к косинусу). Котангенс - это единица, деленная на тангенс.

Стоит упомянуть и знаменитое число Пи (3,14…), которое представляет собой половину длины окружности с радиусом в одну единицу.

Популярные ошибки

Люди, изучающие тригонометрию с нуля, совершают ряд ошибок - в основном по невнимательности.

Во-первых, при решении задач по геометрии необходимо помнить, что использование синусов и косинусов возможно только в прямоугольном треугольнике. Случается, что учащийся «на автомате» принимает за гипотенузу самую длинную сторону треугольника и получает неверные результаты вычислений.

Во-вторых, поначалу легко перепутать значения синуса и косинуса для выбранного угла: напомним, что синус 30 градусов численно равен косинусу 60, и наоборот. При подстановке неверного числа все дальнейшие расчёты окажутся неверными.

В-третьих, пока задача полностью не решена, не стоит округлять какие бы то ни было значения, извлекать корни, записывать обыкновенную дробь в виде десятичной. Часто ученики стремятся получить в задаче по тригонометрии «красивое» число и сразу же извлекают корень из трёх, хотя ровно через одно действие этот корень можно будет сократить.

Этимология слова «синус»

История слова «синус» поистине необычна. Дело в том, что буквальный перевод этого слова с латыни означает «впадина». Всё потому, что верное понимание слова затерялось при переводе с одного языка на другой.

Названия базовых тригонометрических функций произошли из Индии, где понятие синуса обозначалось словом «тетива» на санскрите - дело в том, что отрезок вместе с дугой окружности, на которую он опирался, походил на лук. Во времена расцвета арабской цивилизации индийские достижения в области тригонометрии были заимствованы, и термин перешел в арабский язык в виде транскрипции. Случилось так, что в этом языке уже было похожее слово, обозначающее впадину, и если арабы понимали фонетическую разницу между родным и заимствованным словом, то европейцы, переводящие научные трактаты на латынь, по ошибке буквально перевели арабское слово, никакого отношения к понятию синуса не имеющее. Им мы и пользуемся по сей день.

Таблицы значений

Существуют таблицы, в которые занесены числовые значения для синусов, косинусов и тангенсов всех возможных углов. Ниже представим данные для углов в 0, 30, 45, 60 и 90 градусов, которые необходимо выучить как обязательный раздел тригонометрии для «чайников», благо запомнить их довольно легко.

Если случилось так, что числовое значение синуса или косинуса угла «вылетело из головы», есть способ вывести его самостоятельно.

Геометрическое представление

Начертим круг, через его центр проведем оси абсцисс и ординат. Ось абсцисс располагается горизонтально, ось ординат - вертикально. Обычно они подписываются как «X» и «Y» соответственно. Теперь из центра окружности проведем прямую таким образом, чтобы между ней и осью X получился нужный нам угол. Наконец, из той точки, где прямая пересекает окружность, опустим перпендикуляр на ось X. Длина получившегося отрезка будет равна численному значению синуса нашего угла.

Данный способ весьма актуален, если вы забыли нужное значение, например, на экзамене, и учебника по тригонометрии под рукой нет. Точной цифры вы таким образом не получите, но разницу между ½ и 1,73/2 (синус и косинус угла в 30 градусов) вы точно увидите.

Применение

Одними из первых специалистов, использующих тригонометрию, были моряки, не имеющие никакого другого ориентира в открытом море, кроме неба над головой. Сегодня капитаны кораблей (самолётов и других видов транспорта) не ищут кратчайший путь по звёздам, зато активно прибегают к помощи GPS-навигации, которая без использования тригонометрии была бы невозможна.

Практически в каждом разделе физики вас ждут расчёты с использованием синусов и косинусов: будь то приложение силы в механике, расчёты пути объектов в кинематике, колебания, распространение волн, преломление света - без базовой тригонометрии в формулах просто не обойтись.

Ещё одна профессия, которая немыслима без тригонометрии - это геодезист. Используя теодолит и нивелир либо более сложный прибор - тахиометр, эти люди измеряют разницу в высоте между различными точками на земной поверхности.

Повторяемость

Тригонометрия имеет дело не только с углами и сторонами треугольника, хотя именно с этого она начинала своё существование. Во всех областях, где присутствует цикличность (биологии, медицине, физике, музыке и т. д.) вы встретитесь с графиком, название которого наверняка вам знакомо - это синусоида.

Такой график представляет собой развёрнутую вдоль оси времени окружность и внешне похож на волну. Если вы когда-нибудь работали с осциллографом на занятиях по физике, вы понимаете, о чем идет речь. Как музыкальный эквалайзер, так и прибор, отображающий сердечные ритмы, используют формулы тригонометрии в своей работе.

В заключение

Задумываясь о том, как выучить тригонометрию, большинство учащихся средней и старшей школы начинают считать её сложной и непрактичной наукой, поскольку знакомятся лишь со скучной информацией из учебника.

Что касается непрактичности - мы уже увидели, что в той или иной степени умение обращаться с синусами и тангенсами требуется практически в любой сфере деятельности. А что касается сложности… Подумайте: если люди пользовались этими знаниями больше двух тысяч лет назад, когда взрослый человек имел меньше знаний, чем сегодняшний старшеклассник, реально ли изучить данную область науки на базовом уровне лично вам? Несколько часов вдумчивых занятий с решением задач - и вы достигнете своей цели, изучив базовый курс, так называемую тригонометрию для «чайников».

«Юность, творчество, поиск»

МБОУ «Тирянская СОШ»

Научно-исследовательская работа по теме

«Тригонометрия и тригонометрические уравнения»

Работу выполнил

ученик 10 класса

Субботин Антон.

Руководитель

учитель математики

Кезикова Л.Н.

Нетризово

План.


  1. Введение. Стр. 3.

  2. История возникновения тригонометрии. Стр. 4.

  3. Тригонометрические уравнения. Стр. 7.
3.1. Простейшие тригонометрические уравнения. Стр. 7.

3.2. Схема решения тригонометрических уравнений. Стр. 9.

3.3. Введение вспомогательного аргумента. Стр. 11.

3.4. Универсальная тригонометрическая подстановка. Стр. 12.

3.5. Решение тригонометрических уравнений с помощью

формул. Стр. 14.

3.6. Решение тригонометрических уравнений с помощью

разложения на множители. Стр. 15.

3.7.Решение однородных тригонометрических уравнений. Стр. 16.

3.8. Решение нестандартных тригонометрических

уравнений. Стр. 17.


  1. Практические применения тригонометрии. Стр. 19.
4.1.Применение тригонометрии в искусстве и архитектуре.Стр. 19.

4.2. Тригонометрия в биологии. Стр. 21.

4.3.Тригонометрия в медицине. Стр. 22.


  1. Заключение. Стр. 23.

  2. Список литературы. Стр. 24.

  1. В в едение
В школьной программе по математике есть очень важный раздел «тригонометрия». «Тригонометрические уравнения» - одна из самых сложных тем в школьном курсе математики. Тригонометрические уравнения возникают при решении задач по планиметрии, стереометрии, астрономии, физики и в других областях. Тригонометрические уравнения и неравенства из года в год встречаются среди заданий централизованного тестирования. Я решил писать данную работу, чтобы узнать побольше об истории появления тригонометрии, способах решения тригонометрических уравнений и рассмотреть применение тригономентрии в современной жизни.

Объект исследования: тригонометрия и тригонометрические уравнения.

Предмет исследования: практическое применение тригонометрии.

Цель исследования: установить картину возникновения понятий тригонометрии и выявить примеры применения.


  1. История возникновения тригонометрии
Слово «тригонометрия» впервые встречается в 1505 г. в заглавии книги немецкого теолога и математика Бартоломеуса Питискуса (Bartholomäus Pitiscus, 1561-1613), а сама наука ещё в глубокой древности использовалась для расчётов в астрономии, геодезии и архитектуре.

Происхождение этого слова греческое: τρίγωνον - треугольник, μετρεω - мера. Иными словами, тригонометрия - наука об измерениях треугольников. Возникновение тригонометрии связано с землемерением, астрономией и строительным делом. Хотя название возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны уже 2000 лет назад

Длительную историю имеет понятие синуса. Фактически различные отношения отрезков треугольника и окружности (а по существу, и тригонометрические функции) встречаются уже в 3 в. до н.э. в работах великих математиков Древней Греции - Евклида, Архимеда, Аполлония Пергского. В римский период эти отношения уже достаточно систематично исследовались Менелаем (I в. н. э.), хотя и не приобрели специального названия. Современный синус угла α, например, изучается как полухорда, на которую опирается центральный угол величиной α, или как хорда удвоенной дуги.

В последующий период математика долгое время наиболее активно развивалась индийскими и арабскими учёными. В 4-5 веках появился, в частности, уже специальный термин в трудах по астрономии великого индийского учёного Ариабхаты (476-ок. 550), именем которого назван первый индийский спутник Земли. Отрезок он назвал ардхаджива (ардха-половина, джива-тетива лука, которую напоминает хорда). Позднее привилось более краткое название джива. Арабскими математиками в IXв. слово джива (или джиба) было заменено на арабское словоджайб (выпуклость). При переводе арабских математических текстов в XIIв. это слово было заменено латинскимсинус (sinus-изгиб, кривизна).

Слово косинус намного моложе. Косинус - это сокращение латинского выражения complementlysinus, т.е. «дополнительный синус» (или иначе «синус дополнительной дуги»; вспомните cosα= sin(90° - a)).

Впервые способы решения треугольников, основанные на зависимостях между сторонами и углами треугольника, были найдены древнегреческими астрономами Гиппархом (2 в. до н. э.) и Клавдием Птолемеем (2 в. н. э.). Позднее зависимости между отношениями сторон треугольника и его углами начали называть тригонометрическими функциями.

Значительный вклад в развитие тригонометрии внесли арабские ученые Аль-Батани (850-929) и Абу-ль-Вафа, Мухамед-бен Мухамед (940-998), который составил таблицы синусов и тангенсов через 10’ с точностью до 1/604. Теорему синусов уже знали индийский ученый Бхаскара (р. 1114, год смерти неизвестен) и азербайджанский астроном и математик Насиреддин Туси Мухамед (1201-1274). Кроме того, Насиреддин Туси в своей работе «Трактат о полном четырехстороннике» изложил плоскую и сферическую тригонометрию как самостоятельную дисциплину.

Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс) введен в X веке арабским математиком Абу-ль-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты лишь в XIV веке немецким математиком, астрономом Регимонтаном (1467 г.). Он доказал теорему тангенсов. Региомонтан составил также подробные тригонометрические таблицы; благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе.

Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (линия тангенсов – касательная к единичной окружности).

Дальнейшее развитие тригонометрия получила в трудах выдающихся астрономов Николая Коперника (1473-1543) , Тихо Браге (1546-1601) и Иогана Кеплера (1571-1630), а также в работах математика Франсуа Виета (1540-1603), который полностью решил задачу об определениях всех элементов плоского или сферического треугольника по трем данным.

Долгое время тригонометрия носила чисто геометрический характер, т. е. факты, которые мы сейчас формулируем в терминах тригонометрических функций, формулировались и доказывались с помощью геометрических понятий и утверждений. Такою она была еще в средние века, хотя иногда в ней использовались и аналитические методы, особенно после появления логарифмов. Пожалуй, наибольшие стимулы к развитию тригонометрии возникали в связи с решением задач астрономии, что представляло большой практический интерес (например, для решения задач определения местонахождения судна, предсказания затемнения и т. д.). Астрономов интересовали соотношения между сторонами и углами сферических треугольников. И надо заметить, что математики древности удачно справлялись с поставленными задачами.

Начиная с XVII в., тригонометрические функции начали применять к решению уравнений, задач механики, оптики, электричества, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, для изучения переменного электрического тока и т. д. Поэтому тригонометрические функции всесторонне и глубоко исследовались, и приобрели важное значение для всей математики.


  1. Тригонометрические уравнения

    1. Простейшие тригонометрические уравнения
Простейшие тригонометрические уравнения - это уравнения вида , где - одна из тригонометрических функций: , , tgx . Элементарные тригонометрические уравнения имеют бесконечно много корней. Например, уравнению удовлетворяют следующие значения: , , , и т. д. Общая формула по которой находятся все корни уравнения , где , такова:

Здесь может принимать любые целые значения, каждому из них соответствует определенный корень уравнения; в этой формуле (равно как и в других формулах, по которым решаются элементарные тригонометрические уравнения) называют параметром . Записывают обычно , подчеркивая тем самым, что параметр принимать любые целые значения.

Решения уравнения , где , находятся по формуле

Особо отметим некоторые частные случаи простейших тригонометрических уравнений, когда решение может быть записано без применения общих формул:

    1. Схема решения тригонометрических уравнений

Основная схема, которой мы будем руководствоваться при решении тригонометрических уравнений следующая:

решение заданного уравнения сводится к решению элементарных уравнений. Средства решения: преобразования, разложения на множители, замена неизвестных. Ведущий принцип: не терять корней. Это означает, что при переходе к следующему уравнению (уравнениям) мы не опасаемся появления лишних (посторонних) корней, а заботимся лишь о том, чтобы каждое последующее уравнение нашей "цепочки" (или совокупность уравнений в случае ветвления) являлось следствием предыдущего. Одним из возможных методов отбора корней является проверка. Сразу заметим, что в случае тригонометрических уравнений трудности, связанные с отбором корней, с проверкой, как правило, резко возрастают по сравнению с алгебраическими уравнениями. Ведь проверять приходится серии, состоящие из бесконечного числа членов.

Особо следует сказать о замене неизвестных при решении тригонометрических уравнений. В большинстве случаев после нужной замены получается алгебраическое уравнение. Более того, не так уж и редки уравнения, которые, хотя и являются тригонометрическими по внешнему виду, по существу таковыми не являются, поскольку уже после первого шага - замены переменных - превращаются в алгебраические, а возращение к тригонометрии происходит лишь на этапе решения элементарных тригонометрических уравнений.

Еще раз напомним: замену неизвестного следует делать при первой возможности, получившееся после замены уравнение необходимо решить до конца, включая этап отбора корней, а уж затем возвратится к первоначальному неизвестному.

Одна из особенностей тригонометрических уравнений заключается в том, что ответ во многих случаях может быть записан различными способами. Даже для решения уравнения ответ может быть записан следующим образом:

1) в виде двух серий: , , ;

2) в стандартной форме представляющей собой объединение указанных выше серий: , ;

3) поскольку , то ответ можно записать в виде , . (В дальнейшем наличие параметра , , или в записи ответа автоматически означает, что этот параметр принимает всевозможные целочисленные значения. (Исключения будут оговариваться.)

Очевидно, что тремя перечисленными случаями не исчерпываются все возможности для записи ответа рассматриваемого уравнения (их бесконечно много).

Обычно ответ записывается на основании пункта 2. Полезно запомнить следующую рекомендацию: если на решении уравнения работа не заканчивается, необходимо еще провести исследование, отбор корней, то наиболее удобна форма записи, указанная в пункте 1. (Аналогичную рекомендацию следует дать и для уравнения .)

    1. Введение вспомогательного аргумента

Стандартным путем преобразования выражений вида является следующий прием: пусть - угол, задаваемый равенствами , . Для любых и такой угол существует. Таким образом . Если , или , , , в других случаях .

Пример. Решим уравнение 12cosx - 5sinx = -13

Решение: разделим обе части уравнения на , получим

cosx - sinx = -1.

Одним из решений системы cos = 12/13, sin = 5/13 является = = arccos (12/13). Учитывая это, запишем уравнение в виде:

и, применив формулу для косинуса суммы аргументов, получим

Откуда т.е.

Эта формула и дает все решения исходного уравнения.


    1. Универсальная тригонометрическая подстановка
Многие тригонометрические уравнения можно решить с помощью формул универсальной тригонометрической подстановки

Следует отметить, что применение формул может приводить к сужению ОДЗ исходного уравнения, поскольку не определен в точках , поэтому в таких случаях нужно проверять, являются ли углы , корнями исходного уравнения.

Пример. Решим уравнение

Решение:


Обращение к функции предполагает, что , то есть ,.

По формулам универсальной тригонометрической подстановки исходное уравнение примет вид:

;

;

;


;

или

;

,;

,;

Ответ: ,; ,.
    1. Решение тригонометрических уравнений с помощью формул

Для решения большинства таких уравнений требуется применение различных формул и преобразований тригонометрических выражений.

Пример.


1) Уравнения, сводящиеся к квадратным.

Это уравнение является квадратным относительно cosx. Введем замену переменных cosx=y, тогда получим уравнение: . Его корни , . Таким образом решение сводится к решению двух уравнений:

cosx=1 имеет корни ,

cosx=-2 не имеет корней.

2) Уравнения, допускающие понижение степени.

Понижение степени происходит с использованием формул:



cos2α =2cos 2 α - 1

cos2α =1-2sin 2 α

.

Выразим через cos2x.

    1. Решение тригонометрических уравнений с помощью разложения на множители

Многие тригонометрические уравнения, правая часть которых равна нулю, решаются разложением их левой части на множители.

Пример.


1) sin2x+cosx=0

2sinxcosx+cosx=0

cosx (2sinx+1) =0


,

2) cos3x+sin5x=0


    1. Решение однородных тригонометрических уравнений
Решим уравнение .

Решение. Это уравнение однородное второй степени. Разделим обе чести уравнения на , получим: tg.

Пусть tg, тогда

, , ; , , .

Ответ. .


    1. Решение нестандартных тригонометрических уравнений
Пример 1. Решим уравнение

Решение. Преобразуем выражение :

Уравнение запишется в виде:


    1. Применение тригонометрии в искусстве и архитектуре
С того времени как человек стал существовать на земле, основой улучшения быта и других сфер жизни стала наука. Основы всего, что создано человеком – это различные направления в естественных и математических науках. Одна из них – геометрия. Архитектура не единственная сфера науки, в которой используются тригонометрические формулы. Большинство композиционных решений и построений рисунков проходило именно с помощью геометрии. Но теоретические данные мало что значат. Хочу привести пример на построение одной скульптуры французского мастера Золотого века искусства.

Пропорциональное соотношение в построении статуи было идеально. Однако при поднятии статуи на высокий пьедестал, она смотрелась уродливой. Скульптором не было учтено, что в перспективе к горизонту уменьшаются многие детали и при взгляде снизу вверх уже не создается впечатления ее идеальности. Велось множество расчетов, чтобы фигура с большой высоты смотрелась пропорционально. В основном они были основаны на методе визирования, то есть приблизительного измерения, на глаз. Однако коэффициент разности тех или иных пропорций позволили сделать фигуру более приближенной к идеалу. Таким образом, зная примерное расстояние от статуи до точки зрения, а именно от верха статуи до глаз человека и высоту статуи, можно рассчитать синус угла падения взгляда с помощью таблицы (тоже самое мы можем сделать и с нижней точкой зрения), тем самым найдем точку зрения (рис.1)

На рис.2 ситуация меняется, так как статую поднимают на высоту АС и НС увеличиваются, можно рассчитать значения косинуса угла С, по таблице найдем угол падения взгляда. В процессе можно рассчитать АН, а также синус угла С, что позволит проверить результаты с помощью основного тригонометрического тождества cos 2 + sin 2  = 1.

Сравнив измерения АН в первом и во втором случаи можно найти коэффициент пропорциональности. Впоследствии мы получим чертеж, а потом скульптуру, при поднятии которой зрительно фигура будет приближена к идеалу


РИС. 1

А
С


Н
А
РИС. 2
Н
С


    1. Тригонометрия в биологии.
Биоритмы.

Экологические ритмы: суточные, сезонные (годовые), приливные и лунные циклы

Физиологические ритмы: ритмы давления, биения сердца, артериальное давление, три биоритма, лежащие в основе «теории трех биоритмов»

Теория трех ритмов.


  • Физический цикл -23 дня. Определяет энергию, силу, выносливость, координацию движения

  • Эмоциональный цикл - 28 дней. Состояние нервной системы и настроение

  • Интеллектуальный цикл - 33 дня. Определяет творческую способность личности


    1. Тригонометрия в медицине.

  1. Бета-ритм - 14-30 Гц, активная умственная деятельность
Альфа-ритм – 8-13 Гц, монотонная, рутинная деятельность

Тета-ритм – 4-8 Гц, состояние близкое ко сну, полудрема

Дельта-ритм - 1-4 Гц, глубокий сон


  1. Многим людям приходится делать кардиограмму сердца, но немногие знают, что кардиограмма человеческого сердца – график синуса или косинуса.

  1. Заключение
В результате выполнения данной исследовательской работы:

  • Я подробнее узнал об истории возникновения тригонометрии.

  • Систематизировал методы решения тригонометрических уравнений.

  • Узнал о применениях тригонометрии в архитектуре, биологии, медицине.

Список литературы.

1. А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницин и др. "Алгебра и начала анализа" Учебник для 10-11 классов общеобразовательных учреждений, М., Просвещение, 2010.

2. Глейзер Г.И. История математики в школе: VII-VIII кл. - М.: Просвещение, 1982.

3. Глейзер Г.И. История математики в школе: IX-X кл. - М.: Просвещение, 1983.

4. Рыбников К.А. История математики: Учебник. - М.: Изд-во МГУ, 1994.

© 2024 udalayagvardia.ru - Строительный портал - Udalayagvardia