Преобразователь напряжения повышающий без трансформатора. Простой высоковольтный преобразователь своими руками из трех деталей Увеличение выходной мощности

Преобразователь напряжения повышающий без трансформатора. Простой высоковольтный преобразователь своими руками из трех деталей Увеличение выходной мощности

Принципиальные схемы простых преобразователей напряжения на основе автогенераторов, построены с использованием транзисторов.

В генераторах с самовозбуждением (автогенераторах) для возбуждения электрических колебаний обычно используется положительная обратная связь. Существуют также автогенераторы на активных элементах с отрицательным динамическим сопротивлением, однако в качестве преобразователей они практически не используются.

Однокаскадные преобразователи напряжения

Наиболее простая схема однокаскадного преобразователя напряжения на основе автогенератора показана на рис. 1. Этот вид генераторов получил название блокинг-генераторов. Фазовый сдвиг для обеспечения условия возникновения колебаний в нем обеспечивается определенным включением обмоток.

Рис. 1. Схема преобразователя напряжения с трансформаторной обратной связь.

Аналог транзистора 2N3055 — КТ819ГМ. Блокинг-генератор позволяет получать короткие импульсы при большой скважности. По форме эти импульсы приближаются к прямоугольным.

Емкости колебательных контуров блокинг-гене-ратора, как правило, невелики и обусловлены межвитковыми емкостями и емкостью монтажа. Предельная частота генерации блокинг-генератора — сотни кГц. Недостатком этого вида генераторов является выраженная зависимость частоты генерации от изменения питающего напряжения.

Резистивный делитель в цепи базы транзистора преобразователя (рис. 1) предназначен для создания начального смещения. Несколько видоизмененный вариант преобразователя с трансформаторной обратной связью представлен на рис. 2.

Рис. 2. Схема основного (промежуточного) блока источника высоковольтного напряжения на основе автогенераторного преобразователя.

Автогенератор работает на частоте примерно 30 кГц. На выходе преобразователя формируется напряжение амплитудой до 1 кВ (определяется числом витков повышающей обмотки трансформатора).

Трансформатор Т1 выполнен на диэлектрическом каркасе, вставляемом в броневой сердечник Б26 из феррита М2000НМ1 (М1500НМ1). Первичная обмотка содержит 6 витков; вторичная обмотка — 20 витков провода ПЭЛШО диаметром 0,18 мм (0,12...0,23 мм).

Повышающая обмотка для достижения выходного напряжения величиной 700...800 В имеет примерно 1800 витков провода ПЭЛ диаметром 0,1 мм. Через каждые 400 витков при намотке укладывается диэлектрическая прокладка из конденсаторной бумаги, слои пропитывают конденсаторным или трансформаторным маслом. Места выводов катушки заливают парафином.

Этот преобразователь может быть использован в качестве промежуточного для питания последующих ступеней формирования высокого напряжения (например с электрическими разрядниками или тиристорами).

Следующий преобразователь напряжения (США) также выполнен на одном транзисторе (рис. 3). Стабилизация напряжения смещения базы осуществляется тремя последовательно включенными диодами VD1 — VD3 (прямое смещение).

Рис. 3. Схема преобразователя напряжения с трансформаторной обратной связью.

Коллекторный переход транзистора VT1 защищен конденсатором С2, кроме того, параллельно коллекторной обмотке трансформатора Т1 подключена цепочка из диода VD4 и стабилитрона VD5.

Генератор вырабатывает импульсы, по форме близкие к прямоугольным. Частота генерации составляет 10 кГц и определяется величиной емкости конденсатора СЗ. Аналог транзистора 2N3700 — КТ630А.

Двухтактные преобразователи напряжения

Схема двухтактного трансформаторного преобразователя напряжения показана на рис. 4. Аналог транзистора 2N3055 — КТ819ГМ. Трансформатор высоковольтного преобразователя (рис. 4) может быть выполнен с использованием ферритового незамкнутого сердечника круглого или прямоугольного сечения, а также на основе телевизионного строчного трансформатора.

При использовании ферритового сердечника круглой формы диаметром 8 мм число витков высоковольтной обмотки в зависимости от требуемой величины выходного напряжения может достигать 8000 витков провода диаметром 0,15...0,25 мм. Коллекторные обмотки содержат по 14 витков провода диаметром 0,5...0,8 мм.

Рис. 4. Схема двухтактного преобразователя с трансформаторной обратной связью.

Рис. 5. Вариант схемы высоковольтного преобразователя с трансформаторной обратной связью.

Обмотки обратной связи (базовые обмотки) содержат по 6 витков такого же провода. При подключении обмоток следует соблюдать их фазировку. Выходное напряжение преобразователя — до 8 кВ.

В качестве транзисторов преобразователя могут быть использованы транзисторы отечественного производства, например, КТ819 и им подобные.

Вариант схемы аналогичного преобразователя напряжения показан на рис. 5. Основное различие заключается в цепях подачи смещения на базы транзисторов.

Число витков первичной (коллекторной) обмотки — 2x5 витков диаметром 1,29 мм, вторичной — 2x2 витков диаметром 0,64 мм. Выходное напряжение преобразователя целиком определяется числом витков повышающей обмотки и может достигать 10...30 кВ.

Преобразователь напряжения А. Чаплыгина не содержит резисторов (рис. 6). Он питается от батареи напряжением 5 6 и способен отдавать в нагрузку до 1 А при напряжении 12 В.

Рис. 6. Схема простого высокоэффективного преобразователя напряжения с питанием от батареи 5 В.

Диодами выпрямителя служат переходы транзисторов автогенератора. Устройство способно работать и при пониженном до 1 В напряжении питания.

Для маломощных вариантов преобразователя можно использовать транзисторы типа КТ208, КТ209, КТ501 и другие. Максимальный ток нагрузки не должен превышать максимального тока базы транзисторов.

Диоды VD1 и VD2 — не обязательны, однако позволяют получить на выходе дополнительное напряжение 4,2 В отрицательной полярности. КПД устройства около 85%. Трансформатор Т1 выполнен на кольце К18x8x5 2000НМ1. Обмотки I и II имеют по 6, III и IV — по 10 витков провода ПЭЛ-2 0,5.

Преобразователь по схеме индуктивной трехточки

Преобразователь напряжения (рис. 7) выполнен по схеме индуктивной трехточки и предназначен для измерений высокоомных сопротивлений и позволяет получить на выходе не-стабилизированное напряжение 120... 150 В.

Потребляемый преобразователем ток около 3...5 мА при напряжении питания 4,5 В. Трансформатор для этого устройства может быть создан на основе телевизионного трансформатора БТК-70.

Рис. 7. Схема преобразователя напряжения по схеме индуктивной трехтонки.

Его вторичную обмотку удаляют, взамен нее наматывают низковольтную обмотку преобразователя — 90 витков (два слоя по 45 витков) провода ПЭВ-1 0,19...0,23 мм. Отвод от 70-го витка снизу по схеме. Резистор R1 — величиной 12...51 кОм.

Преобразователя напряжения 1,5 В/-9 В

Рис. 8. Схема преобразователя напряжения 1,5 В/-9 В.

Преобразователь (рис. 8) представляет собой однотактный релаксационный генератор с емкостной положительной обратной связью (С2, СЗ). В коллекторную цепь транзистора VT2 включен повышающий автотрансформатор Т1.

В преобразователе использовано обратное включение выпрямительного диода VD1, т.е. при открытом транзисторе VT2 к обмотке автотрансформатора приложено напряжение питания Un, и на выходе автотрансформатора появляется импульс напряжения. Однако включенный в обратном направлении диод VD1 в это время закрыт, и нагрузка отключена от преобразователя.

В момент паузы, когда транзистор закрывается, полярность напряжения на обмотках Т1 изменяется на противоположную, диод VD1 открывается, и выпрямленное напряжение прикладывается к нагрузке.

При последующих циклах, когда транзистор VT2 запирается, конденсаторы фильтра (С4, С5) разряжаются через нагрузку, обеспечивая протекание постоянного тока. Индуктивность повышающей обмотки автотрансформатора Т1 при этом играет роль дросселя сглаживающего фильтра.

Для устранения подмагничивания сердечника автотрансформатора постоянным током транзистора VT2 используется перемагничивание сердечника автотрансформатора за счет включения параллельно его обмотке конденсаторов С2 и СЗ, которые одновременно являются делителем напряжения обратной связи.

Когда транзистор VT2 закрывается, конденсаторы С2 и СЗ в течение паузы разряжаются через часть обмотки трансформатора, перемагничивая сердечник Т1 током разряда.

Частота генерации зависит от напряжения на базе транзистора ѴТ1. Стабилизация выходного напряжения осуществляется за счет отрицательной обратной связи (ООС) по постоянному напряжению посредством R2.

При понижении выходного напряжения увеличивается частота генерируемых импульсов при примерно одинаковой их длительности. В результате увеличивается частота подзарядки конденсаторов фильтра С4 и С5 и падение напряжения на нагрузке компенсируется. При увеличении выходного напряжения частота генерации, наоборот, уменьшается.

Так, после заряда накопительного конденсатора С5 частота генерации падает в десятки раз. Остаются лишь редкие импульсы, компенсирующие разряд конденсаторов в режиме покоя. Такой способ стабилизации позволил уменьшить ток покоя преобразователя до 0,5 мА.

Транзисторы ѴТ1 и ѴТ2 должны иметь возможно больший коэффициент усиления для повышения экономичности. Обмотка автотрансформатора намотана на ферритовом кольце К10x6x2 из материала 2000НМ и имеет 300 витков провода ПЭЛ-0,08 с отводом от 50-го витка (считая от «заземленного» вывода). Диод VD1 должен быть высокочастотным и иметь малый обратный ток. Налаживание преобразователя сводится к установке выходного напряжения равным -9 В путем подбора резистора R2.

Преобразователь напряжения с ШИМ управлением

На рис. 9 показана схема преобразователя стабилизированного напряжения с широтно-импульсным управлением. Преобразователь сохраняет работоспособность при уменьшении напряжения батареи с 9.... 12 до 3В. Такой преобразователь оказывается наиболее пригодным при батарейном питании аппаратуры.

КПД стабилизатора — не менее 70%. Стабилизация сохраняется при уменьшении напряжения источника питания ниже выходного стабилизированного напряжения преобразователя, чего не может обеспечить традиционный стабилизатор напряжения. Принцип стабилизации, использованный в данном преобразователе напряжения.

Рис. 9. Схема преобразователя стабилизированного напряжения с ШИМ управлением.

При включении преобразователя ток через резистор R1 открывает транзистор ѴТ1, коллекторный ток которого, протекая через обмотку II трансформатора Т1, открывает мощный транзистор ѴТ2. Транзистор ѴТ2 входит в режим насыщения, и ток через обмотку I трансформатора линейно увеличивается.

В трансформаторе происходит накопление энергии. Через некоторое время транзистор ѴТ2 переходит в активный режим, в обмотках трансформатора возникает ЭДС самоиндукции, полярность которой противоположна приложенному к ним напряжению (магнитопровод трансформатора не насыщается).

Транзистор ѴТ2 лавинообразно закрывается и ЭДС самоиндукции обмотки I через диод VD2 заряжает конденсатор СЗ. Конденсатор С2 способствует более четкому закрыванию транзистора. Далее процесс повторяется.

Через некоторое время напряжение на конденсаторе СЗ увеличивается настолько, что открывается стабилитрон VD1, и базовый ток транзистора ѴТ1 уменьшается, при этом уменьшается ток базы, а значит, и коллекторный ток транзистора ѴТ2.

Поскольку накопленная в трансформаторе энергия определяется коллекторным током транзистора ѴТ2, дальнейшее увеличение напряжения на конденсаторе СЗ прекращается. Конденсатор разряжается через нагрузку. Таким образом на выходе преобразователя поддерживается постоянное напряжение. Выходное напряжение задает стабилитрон VD1. Частота преобразования изменяется в пределах 20... 140 кГц.

Преобразователь напряжения 3-12В/+15В, -15В

Преобразователь напряжения, схема которого показана на рис. 10, отличается тем, что в нем цепь нагрузки гальванически развязана от цепи управления. Это позволяет получить несколько вторичных стабильных напряжений. Использование интегрирующего звена в цепи обратной связи позволяет улучшить стабилизацию вторичного напряжения.

Рис. 10. Схема преобразователя стабилизированного напряжения с биполярным выходом 15+15В.

Частота преобразования уменьшается почти линейно при уменьшении питающего напряжения. Это обстоятельство усиливает обратную связь в преобразователе и повышает стабильность вторичного напряжения.

Напряжение на сглаживающих конденсаторах вторичных цепей зависит от энергии импульсов, получаемых от трансформатора. Наличие резистора R2 делает напряжение на накопительном конденсаторе С3 зависимым и от частоты следования импульсов, причем степень зависимости (крутизна) определяется сопротивлением этого резистора.

Таким образом, подстроечным резистором R2 можно устанавливать желаемую зависимость изменения напряжения вторичных обмоток от изменения напряжения питания. Полевой транзистор ѴТ2 — стабилизатор тока. КПД преобразователя может доходить до 70... 90%.

Нестабильность выходного напряжения при напряжении питания 4... 12 В не более 0,5%, а при изменении температуры окружающего воздуха от -40 до +50°С — не более 1,5%. Максимальная мощность нагрузки — 2 Вт.

При налаживании преобразователя резисторы R1 и R2 устанавливаются в положение минимального сопротивления и подключают эквиваленты нагрузок RH. На вход устройства подается напряжение питания 12 В и с помощью резистора R1 на нагрузке Rн устанавливается напряжение 15 В. Далее напряжение питания уменьшают до 4В и резистором R2 добиваются напряжения на выходе также 15 В. Повторяя этот процесс несколько раз, добиваются стабильного напряжения на выходе.

Обмотки I и II и магнитопровод трансформатора у обоих вариантов преобразователи одинаковы. Обмотки намотаны на броневом магнитопроводе Б26 из феррита 1500НМ. Обмотка I содержит 8 витков провода ПЭЛ 0,8, а II — 6 витков провода ПЭЛ 0,33 (каждая из обмоток III и IV состоит из 15 витков провода ПЭЛ 0,33 мм).

Малогабаритный сетевой преобразователь напряжения

Схема простого малогабаритного преобразователя сетевого напряжения, выполненного из доступных элементов, показана на рис. 11. В основе устройства обычный блокинг-генератор на транзисторе VT1 (КТ604, КТ605А, КТ940).

Рис. 11. Схема понижающего преобразователя напряжения на основе блокинг-генератора.

Трансформатор Т1 намотан на броневом сердечнике Б22 из феррита М2000НН. Обмотки Іа и Іб содержат 150+120 витков провода ПЭЛШО 0,1 мм. Обмотка II имеет 40 витков провода ПЭЛ 0,27 мм III — 11 витков провода ПЭЛШО 0,1 мм. Вначале наматывается обмотка Іа, затем — II, после — обмотка lb, и, наконец, обмотка III.

Источник питания не боится короткого замыкания или обрыва в нагрузке, однако имеет большой коэффициент пульсаций напряжения, низкий КПД, небольшую выходную мощность (до 1 Вт) и значительный уровень электромагнитных помех. Питать преобразователь можно и от источника постоянного тока напряжением 120 6. В этом случае резисторы R1 и R2 (а также диод VD1) следует исключить из схемы.

Слаботочный преобразователь напряжения на 440В

Слаботочный преобразователь напряжения для питания газоразрядного счетчика Гейгера-Мюллера может быть собран по схеме на рис. 12. Преобразователь представляет собой транзисторный блокинг-генератор с дополнительной повышающей обмоткой. Импульсы с этой обмотки заряжают конденсатор СЗ через выпрямительные диоды VD2, VD3 до напряжения 440 В.

Конденсатор СЗ должен быть либо слюдяным, либо керамическим, на рабочее напряжение не ниже 500 В. Длительность импульсов блокинг-генератора примерно 10 мкс. Частота следования импульсов (десятки Гц) зависит от постоянной времени цепи R1, С2.

Рис. 12. Схема слаботочного преобразователя напряжения для питания газоразрядного счетчика Гейгера-Мюллера.

Магнитопровод трансформатора Т1 изготавливают из двух склеенных вместе ферритовых колец К16x10x4,5 3000НМ и изолируют его слоем лакоткани, тефлона или фторопласта.

В начале наматывают внавал обмотку III — 420 витков провода ПЭВ-2 0,07, заполняя магнитопровод равномерно. Поверх обмотки III накладывают слой изоляции. Обмотки I (8 витков) и II (3 витка) наматывают любым проводом поверх этого слоя, их также следует возможно равномернее распределить по кольцу.

Следует обратить внимание на правильную фазировку обмоток, она должна быть выполнена до первого включения. При сопротивлении нагрузки порядка единиц МОм преобразователь потребляет ток 0,4... 1,0 мА.

Преобразователь напряжения для питания фотовспышки

Преобразователь напряжения (рис. 13) предназначен для питания фотовспышки. Трансформатор Т1 выполнен на магнитопроводе из двух сложенных вместе пермаллоевых колец К40х28х6. Обмотка коллекторной цепи транзистора VT1 имеет 16 витков ПЭВ-2 0,6 мм; его базовой цепи — 12 витков такого же провода. Повышающая обмотка содержит 400 витков ПЭВ-2 0,2.

Рис. 13. Схема преобразователя напряжения для фотовспышки.

Неоновая лампа HL1 использована от стартера лампы дневного света. Выходное напряжение преобразователя плавно повышается на конденсаторе фотовспышки до 200 В за 50 секунд. Устройство при этом потребляет ток до 0,6 А.

Преобразователь напряжения ПН-70

Для питания ламп-вспышек предназначен преобразователь напряжения ПН-70, являющийся основой описываемого ниже устройства (рис. 14). Обычно энергия батарей преобразователя расходуется с минимальной эффективностью.

Вне зависимости от частоты следования вспышек света генератор работает непрерывно, расходуя большое количество энергии и разряжая батареи.

Рис. 14. Схема модифицированного преобразователя напряжения ПН-70.

Перевести работу преобразователя в ждущий режим удалось О. Панчику, который включил на выходе преобразователя резистивный делитель R5, R6 и подал сигнал с него через стабилитрон VD1 на электронный ключ, выполненный на транзисторах VT1 — ѴТЗ по схеме Дарлингтона.

Как только напряжение на конденсаторе фотовспышки (на схеме не показан) достигнет номинального значения, определяемого значением резистора R6, стабилитрон VD1 пробьется, а транзисторный ключ отключит батарею питания (9 В) от преобразователя.

Когда напряжение на выходе преобразователя понизится в результате саморазряда или разряда конденсатора на лампу-вспышку, стабилитрон VD1 перестанет проводить ток, произойдет включение ключа и, соответственно, преобразователя. Транзистор ѴТ1 должен быть установлен на медном радиаторе размерами 50x22x0,5 мм.

!
В этой самоделке AKA KASYAN сделает универсальный понижающий и повышающий преобразователь напряжения.

Недавно автор собрал литиевый аккумулятор. А сегодня раскроет секрет, для какой цели он его изготовил.


Вот новый преобразователь напряжения, режим его работы - однотактный.


Преобразователь имеет небольшие габариты и достаточно большую мощность.


Обычные преобразователи делают одно из двух. Только повышают, или только понижают подаваемое на вход напряжение.
Вариант, изготовленный автором может как повысить,


так и понизить входное напряжение до требуемого значения.


У автора имеются различные регулируемые источники питания, с помощью которых он тестирует собранные самоделки.


Заряжает аккумуляторы, да и использует их для различных других задач.


Не так давно появилась идея создания портативного источника питания.
Постановка задачи была такой: устройство должно иметь возможность заряжать всевозможные портативные гаджеты.


От обычных смартфонов и планшетов до ноутбуков и видеокамер, а также справился даже с питанием любимого паяльника автора TS-100.


Естественно можно просто воспользоваться универсальными зарядными устройствами с адаптерами питания.
Но все они питаются от 220В




В случае автора требуется нужен был именно портативный источник различных выходных напряжений.


А таковых в продаже автор не нашел.

Питающие напряжения для указанных гаджетов имеют очень широкий диапазон.
Например смартфонам нужно всего 5 В, ноутбукам 18, некоторым даже 24 В.
Аккумулятор, изготовленный автором, рассчитан на выходное напряжение в 14,8 В.
Следовательно, необходим преобразователь, способный как повышать, так и понижать начальное напряжение.


Обратите внимание, некоторые номиналы указанных на схеме компонентов, отличаются от установленных на плате.




Это конденсаторы.


На схеме указаны эталонные номиналы, а плату автор делал для решения своих задач.
Во-первых, интересовала компактность.


Во-вторых, авторский преобразователь питания позволяет спокойно создать выходной ток в 3 Ампера.


AKA KASYAN большего и не надо.


Связано это с тем, что емкость примененных накопительных конденсаторов небольшая, но схема способна выдать выходной ток до 5 А.

Поэтому схема является универсальной. Параметры зависят от емкости конденсаторов, параметров дросселя, диодного выпрямителя и характеристик полевого ключа.






Замолвим пару слов о схеме. Она представляет собой однотактный преобразователь на базе шим-контроллера UC3843.


Поскольку напряжение от аккумулятора немного больше штатного питания микросхемы, в схему был добавлен 12В стабилизатор 7812 для питания шим-контроллера.


В приведенной схеме данный стабилизатор указан не был.
Сборка. Про перемычки, установленные с монтажной стороны платы.


Этих перемычек четыре, и две из них являются силовыми. Их диаметр должен быть не менее миллиметра!
Трансформатор, вернее дроссель, намотан на желтом кольце из порошкового железа.




Такие колечки можно найти в выходных фильтрах компьютерных блоков питания.
Размеры примененного сердечника.
Внешний диаметр 23,29мм.


Внутренний диаметр 13,59мм.


Толщина 10,33мм.


Скорее всего, толщина намотки изоляции 0,3мм.
Дроссель состоит из двух равноценных обмоток.


Обе обмотки наматываются медной проволокой диаметром 1,2 мм.
Автор рекомендует применять проволоку диаметром немного больше, 1,5-2,0 мм.


Витков в обмотке десять, оба провода наматываются разом, в одном направлении.


Перед установкой дросселя перемычки заклеиваем капроновым скотчем.


Работоспособность схемы заключается в правильной установке дросселя.




Необходимо правильно припаять выводы обмоток.


Просто установите дроссель, как это показано на фото.








Силовой N-канальный полевой транзистор, подойдет практически любой низковольтный.


Ток транзистора не ниже 30А.


Автор использовал транзистор IRFZ44N.


Выходной выпрямитель - это сдвоенный диод YG805C в корпусе TO220.




Важно использовать диоды Шоттки, так как они дают минимальную просадку напряжения (0,3В против 0,7) на переходе, это влияет на потери и нагрев. Их также легко найти в пресловутых компьютерных блоках питания.


В блоках они стоят в выходном выпрямителе.


В одном корпусе - два диода, которые в схеме у автора запараллелены для увеличения проходящего тока.
Преобразователь стабилизирован, имеется обратная связь.

Выходное напряжение задает резистор R3


Его можно заменить на выносной переменный резистор для удобства работы.


Преобразователь также снабжен защитой от короткого замыкания. В качестве датчика тока применен резистор R10.


Это низкоомный шунт, и чем выше его сопротивление тем меньше ток срабатывания защиты. Установлен SMD вариант, на стороне дорожек.


Если защита от КЗ не нужна, то этот узел просто исключаем.


Еще защита. На входе схемы стоит предохранитель на 10А.


Кстати, в плате контроля аккумулятора уже установлена защита от КЗ.


Конденсаторы, применяемые в схеме крайне желательно брать с низким внутренним сопротивлением.




Стабилизатор, полевой транзистор и диодный выпрямитель крепятся к алюминиевому радиатору в виде согнутой пластины.




Обязательно изолируем подложки транзистора и стабилизатора от радиатора при помощи пластиковых втулок и теплопроводящих изолирующих прокладок. Не забываем и про термопасту. А установленный в схеме диод уже имеет изолированный корпус.

Всем привет. Целью этого проекта было создание генератора высокого напряжения, а по совместительству индукционного нагревателя значительной мощности, причём использоваться должна была очень простая схема и легкодоступные компоненты. Многие новички ищут способ эффективного увеличения мощности обычных двухтранзисторных ZVS и эта публикация в этом поможет.

Инвертор от Mazzilli, известный как « », пользуется популярностью среди любителей HV благодаря своей простоте и эффективности. Схема, которую здесь представляем, — ее модификация, чтобы передавать больше мощности.

Что касается теоретического описания работы инвертора, ему уже посвятили в интернете довольно много статей, которые всесторонне объясняют как теорию, так и практику.

Схема принципиальная ZVS преобразователя


Схема высоковольтного преобразователя на импульсных трансформаторах

Как видите, для удобства всё было разделено на два модуля. Такой подход позволяет легко подключать различные трансформаторы вместе с оптимально подобранными резонансными емкостями.

  1. Первый модуль — это драйвер с источником питания . Он имеет правильную электронику инвертора, а также встроенный выпрямитель и фильтр, который позволяет напрямую подключать устройство к сетевому трансформатору. Здесь использованы транзисторы IRFP260 и массивные дроссели с высоким током насыщения, что гарантирует надежную работу инвертора даже с высокой мощностью. Большой электролитический конденсатор видимый на фото, используется для фильтрации источника питания, он на 10000 мкФ 250 В. Это кажется нелогичным, но выбрали его из-за очень низких ЭПС и больших номинальных токов, что весьма важно в таких системах.
  2. Второй модуль состоит из двух параллельно подключенных строчников с резонансной батареей конденсаторов . Обе обмотки имеют по 8 витков, а резонансная батарея состоит из нескольких конденсаторов общей емкостью около 2,4 мкФ. Это позволило уменьшить импеданс резонансной цепи за счет увеличения количества мощности до уровня, на котором основным ограничением была текущая эффективность подачи всего сетевого трансформатора. Оба трансформатора (ТВС) практически идентичны, что очень важно — требуется даже распределение нагрузки, иначе инвертор может выйти из нормальной генерации, что приводит к сжиганию транзисторов.

Обмотка образована скручиванием 16 эмалевых проводов 0.4 мм, а затем обертыванием всего изоляционной лентой для механической защиты. Это значительно уменьшает скин-эффект и связанные с ним потери — ранее использовались обмотки, выполненные из обычных толстых проводов, под нагрузкой они нагреваются до температуры, при которой изоляция начала дымить. Эти же лишь немного теплые, даже после долгой работы схемы.

Испытания преобразователя в действии

Инвертор способен выдерживать 10 минут непрерывной работы, после чего трансформаторы начинают требовать охлаждения. Транзисторы не нагреваются слишком сильно — радиаторы остаются почти холодными. Большая часть тепла выделяется на выпрямителе моста, который может неплохо нагреваться — на нем тоже большой радиатор.

Инвертор способен выдавать большие разряды благодаря значительной эффективности тока. Максимальная длина растянутой молнии составляет чуть более 20 см.

Также покажем сигналы осциллограмм: Первый это синусоида на LC-схеме без зажженной дуги. Последний скриншот показывает последовательность импульсов на одном из полевых ключей.

Индукционный нагреватель железа

Эта схема, как и любой такой резонансный преобразователь, может использоваться как . Чтобы сделать это, просто соберите индуктор в виде небольшой катушки, соединенный параллельно с резонансной батареей конденсаторов емкостью 2-4 мкФ. Вот как выглядит нагрев металла:

О транзисторах для генератора

IRFP260 — типичный выбор для этого типа инвертора. Данная схема питается от 27 В переменного тока, что означает около 36 В постоянного тока после выпрямления и фильтрации. Их применение гарантирует стабильную работу до 50 В постоянного тока, вы конечно можете повышать вольтаж еще дальше, но это рискованно.

Что касается транзисторов IRF740, они подходят только для меньших мощностей из-за небольших Id и больших Rds, что подразумевает меньшую силу тока и намного более высокие потери. IRFP260 имеет значительно меньшие Rds и большую предельную мощность рассеивания тепла, поэтому он обеспечивает большую текущую долговечность и меньшие потери проводимости. Их можно купить в большинстве интернет-магазинов или на Али по 6$ за 10 шт. Можно использовать и IRP240, но вы сможете прокачать через него гораздо меньшие токи.

Использование транзисторов под более высокое напряжение не является особенно целесообразным, так как они имеют более высокие Rds (сопротивление перехода), что приводит к увеличению потерь и в районе 60 … 70 В постоянного тока транзисторная управляющая связь не срабатывает, вызывая уничтожение транзисторов пробоем. Поэтому предлагаем остаться на более низких напряжениях питания — до 50 В постоянного тока. Вместо дальнейшего увеличения напряжения лучше уменьшить импеданс резонансного контура, чтобы инвертор мог потреблять больше энергии без увеличения напряжения.

Удалось запустить преобразователь используя источник питания 12 В / 200 Вт — разряды были эффективными, но не настолько впечатляющие. Искра была около 10 см, толстая и пушистая.

В целом питание обеспечивается группой трансформаторов, выдающих 27 В переменного тока. Потребление тока на максимальной растянутой высоковольтной дуге достигает 30 А.

Является простым повышающим преобразователем, построенным на м/с NE555, которая выполняет здесь функцию генератора импульсов. Выходное напряжение может варьироваться в пределах 110-220В (регулируется потенциометром).

Область применения

Преобразователь идеально подходит для питания ламп часов Nixie или маломощных или усилителей к наушникам, заменив собой классический источник питания высокого напряжения на трансформаторах. Целью создания этого устройства был проект часов на вакуумных индикаторах в котором схема работает как источник питания высокого напряжения. Преобразователь при питании 9 В и потребляет ток порядка 120 мА (при 10 мА нагрузке).

Принцип работы схемы

Как видите, это стандартный преобразователь напряжения повышающего типа. Частота на выходе микросхемы U1 (NE555) определяется номиналами элементов R1 (56k), R3 (10k), С2 (2,2 nF), и составляет около 45 кГц. Выход с генератора непосредственно управляет mosfet транзистором Т1, который переключает ток, протекающий через катушку L1. Во время нормальной работы катушка L1 периодически накапливает и отдает энергию, увеличивая выходное напряжение.

Схема инвертора на 555

Когда транзистор T1 (IRF740) открывается и подаёт на катушку L1 (100 мкГн) питание (ток течет от источника питания к массе — это первый этап. На втором этапе, когда транзистор будет отключен — ток через катушку в соответствии с законом коммутации вызывает увеличение напряжения на аноде диода D1 (BA159) до тех пор, пока он не будет поляризован в направлении проводимости. Происходит разряд катушки в конденсатор C4 (2,2 мкф). Таким образом, напряжение на C4 растет до тех пор, пока напряжение на выходе делителя R5 (220k), P1 (1к) и R6 470R не вырастет до значения около 0,7 В. Это приведет к включению транзистора T2 (BC547) и отключению генератора 555. Когда напряжение на выходе упадет — транзистор Т2 будет закрыт и генератор снова включается. Так выходное напряжение преобразователя регулируется по величине.


Готовая плата для пайки

Конденсатор C1 (470uF) фильтрует напряжение питания схемы. Регулировка выходного напряжения выполняется с помощью потенциометра P1.

Сборка бестрансформаторного преобразователя


Собранный преобразователь 9-150 вольт

Преобразователь можно спаять на печатной плате. Рисунок PDF платы, в том числе в зеркальном отображении и расположение деталей — . Монтаж прост и пайка элементов произвольная. Под микросхему U1 имеет смысл использовать панельку. Устройство следует питать напряжением 9В.

В этой статье хочу рассказать о намотке трансформатора для мощного автомобильного инвертора 12-220.
Данный трансформатор был намотан для работы совместно с платой китайского автомобильного преобразователя напряжения.

Такие инверторы в последнее время находят широкую популярность из-за легкого веса, компактных размеров и небольшой цены, незаменимая вещь если нужно в автомобиле подключить сетевые нагрузки, которые нуждаются в источнике питания 220 Вольт, да еще и переменный ток с частотой 50 Гц, инвертор полностью может обеспечивать такие условия. Несколько слов о самом преобразователе, его примерная схема показана ниже.

Схема приведена только для того, чтобы показать принцип работы, а работает это дело довольно простым образом.

Два генератора, оба TL494, первый из них работает на частоте около 60кГц и предназначен для раскачки силовых транзисторов первичной цепи, которые в свою очередь раскачивают силовой импульсный трансформатор. Второй генератор настроен на частоту порядка 100 Гц и управляет высоковольтными силовыми транзисторами.

Выпрямленное напряжение после вторичной обмотки трансформатора поступает к высоковольтным полевикам, которые срабатывая с заданной частотой превращают постоянный ток в переменный – с частотой 50 Гц. Форма выходного сигнала – прямоугольная или правильнее говоря – модифицированная синусоида.

Наш трансформатор является основным силовым компонентом инвертора и его намотка самый ответственный момент.

Первичная обмотка в виде шины (к сожалению точную длину указать не могу), ширина этой шины порядка 24мм, толщина 0.5мм.

Рабочую частоту и тип задающего генератора.
Входное напряжение инвертора
Габаритные размеры и тип (марку) сердечника трансформатора

Вначале была намотана первичная обмотка. Две плечи были намотаны одной цельной лентой, кол-во витков 2х2 витка. После намотки первых двух витков был сделан отвод, затем намотаны остальные два витка.

Поверх первичной обмотки обязательно нужно ставить изоляцию, в моем случае обычная изолента. Количество слоев изоляции – 5.

Вторичная обмотка мотается в том же направлении, что и первичная, например – по часовой стрелке.


Для получения 220 Вольт выходного напряжения в моем случае обмотка содержит 42 витка, притом намотка обмотки делалась слоями – первый слой 14 витков, поверх еще два слоя, которые содержат точно такое же количество витков.
Обмотка моталась двумя параллельными жилами провода 0,8мм, пример расчета показан ниже.

После всего этого собираем трансформатор – скрепляем половинки сердечника используя любую изоленту или скотч, клей не советую, поскольку он может проникнуть между половинками феррита и образовать искусственный зазор, который приведет к повышению тока покоя схему и к сгоранию входных транзисторов инвертора, так, что нужно на этот фактор обратить большое внимание.




В работе трансформатор ведет себя очень спокойно, ток потребления без нагрузки в районе 300 мА, но это с учетом потребления высоковольтной части.

Максимальная габаритная мощность сердечника, который я использовал, составляет в районе 1000 ватт, разумеется намоточные данные будут разными в зависимости от типа используемого сердечника. К стати намотку можно делать как на Ш-образных сердечниках, так и на ферритовых кольцах.

По такой основе мотаются исключительно все трансформаторы и в промышленных и в самодельных импульсных преобразователей напряжения, к стати – конструкции самодельных инверторов очень часто повторяются радиолюбителями в проектах сабвуферных усилителей и не только, так, что думаю статья была интересной для многих.

© 2024 udalayagvardia.ru - Строительный портал - Udalayagvardia